مشخصات پژوهش

صفحه نخست /Tiny machine learning models ...
عنوان Tiny machine learning models for autonomous workload distribution across cloud-edge computing continuum
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Internet of things (IoT) · Edge computing · Cloud computing · Workload distribution · Tiny models
چکیده Resource management and task distribution in real-time have become increasingly challenging due to the growing use of latency-critical applications across dispersed edge-cloud infrastructures. Intelligent adaptable mechanisms capable of functioning effectively on resource-constrained edge devices and responding quickly to dynamic workload changes are required in these situations. In this work, we offer a learning-based system for autonomous resource allocation across the edge–cloud continuum that is both lightweight and scalable. Two models are presented: TinyDT, a small offline decision tree trained on state-action information retrieved from an adaptive baseline, and TinyXCS, an online rule-based classifier system that can adjust to runtime conditions. Both models are designed to operate on resource-constrained edge devices while minimizing memory overhead and inference latency. Our analysis demonstrates that TinyXCS and TinyDT outperform existing online and offline baselines in terms of throughput and latency, providing a reliable, power-efficient solution for next-generation edge intelligence
پژوهشگران محمدرضا پورحسینی (نفر اول)، مهدی عباسی (نفر دوم)، عاطفه سلیمی (نفر سوم)، اریک المروث (نفر چهارم)، حسن حقیقی (نفر پنجم)، Parham Moradi (نفر ششم به بعد)، بهمن جوادی (نفر ششم به بعد)