مشخصات پژوهش

صفحه نخست /Solvability of a generalized ...
عنوان Solvability of a generalized $\pmb{\psi}$-Riemann-Liouville fractional BVP under nonlocal boundary conditions
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها $\psi$-Riemann-Liouville fractional differential equation, existence and uniqueness, Banach contraction principle, Boyd-Wong contraction principle, Rus's contraction principle
چکیده In this paper we consider a class of nonlinear BVP involving fractional derivative in the $\psi$-Riemann-Liouville sense with nonlocal boundary conditions. By means of some properties of the Green's function and fixed point theorems due to Banach, Boyd-Wong, and Rus, existence of a unique solution is obtained. We have some examples that prove the theory is true.
پژوهشگران فائوزی هادوچی (نفر اول)، محمداسماعیل سامعی (نفر دوم)