مشخصات پژوهش

صفحه نخست /Existence of Solutions for a ...
عنوان Existence of Solutions for a Singular Fractional q-Differential Equations under Riemann–Liouville Integral Boundary Condition
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Caputo q-derivative; singular sum fractional q-differential; fixed point; equations; Riemann–Liouville q-integral
چکیده We investigate the existence of solutions for a system of m-singular sum fractional qdifferential equations in this work under some integral boundary conditions in the sense of Caputo fractional q-derivatives. By means of a fixed point Arzelá–Ascoli theorem, the existence of positive solutions is obtained. By providing examples involving graphs, tables, and algorithms, our fundamental result about the endpoint is illustrated with some given computational results. In general, symmetry and q-difference equations have a common correlation between each other. In Lie algebra, q-deformations can be constructed with the help of the symmetry concept
پژوهشگران محمداسماعیل سامعی (نفر اول)، رضوان غفاری (نفر دوم)، شائو یائو (نفر سوم)، محمد کا ام کابار (نفر چهارم)، فرانسیسکو مارتینز (نفر پنجم)، مصطفی اینچ (نفر ششم به بعد)