عنوان
|
ON FINITE GROUPS WITH THE SAME ORDER TYPE AS SIMPLE GROUPS F4(q) WITH q EVEN
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Exceptional groups of Lie type, prime graph, the set of the number of elements with the same order.
|
چکیده
|
hemainaimofthisarticleistostudyquantitativestructure of finite simple exceptional groups F4(2n) with n > 1. Here, we prove that the finite simple exceptional groups F4(2n), where 24n +1 is a prime number with n > 1 a power of 2, can be uniquely determined by their orders and the set of the number of elements with the same order. In conclusion, we give a positive answer to J. G. Thompson’s problem for finite simple exceptional groups F4(2n).
|
پژوهشگران
|
اشرف دانشخواه (نفر اول)، فاطمه معمری (نفر دوم)، حسین پرویزی مساعد (نفر سوم)
|