مشخصات پژوهش

صفحه نخست /پیش بینی اثربخشی درمان ...
عنوان پیش بینی اثربخشی درمان مبتلایان به سرطان کولورکتال با استفاده از الگوریتمهای هوش محاسباتی در دادههای بیان ژن
نوع پژوهش پایان نامه
کلیدواژه‌ها سرطان کولون و راست روده، شیمی پرتودرمانی، پاسخ به درمان، بیان ژن، انتخاب ژن، انتخاب ویژگی، الگوریتم ژنتیک، هوش محاسباتی، شناسایی و کنترل عیب
چکیده زمینه: با بیش از یک میلیون و چهارصد هزار مورد ابتلای جدید سالانه و بیش از هفتصد هزار مورد منجر به فوت، سرطان روده بزرگ (کولورکتال- CRC) در رده سوم سرطان های شایع قرار می گیرد. سرطان کولورکتال شامل سرطان کولون و راست روده، به علت رشد غیر طبیعی سلول های سرطانی با قدرت تهاجم و تکثیر در سایر بافت های بدن در موضع کولون یا راست روده پدیدار می شود. با توجه به مرحله، درجه و محل این سرطان استراتژی های درمانی مختلفی به کار بسته می شود. حدود 10 تا 20 درصد موارد ابتلا به سرطان کولورکتال را بیماران مبتلا به سرطان راست روده پیشرفته موضعی (LARC) تشکیل می دهند. روش درمان استاندارد در این سرطان شیمی-پرتو درمانی قبل از عمل جراحی (PCRT) است. این استراتژی درمانی برخی اثرات جانبی در دراز مدت به همراه دارد؛ ضمن آن که قسمت قابل توجهی از بیماران نیز (حدود 60 درصد) به این درمان پاسخ نمی دهند. لذا، بررسی بیومارکرهایی که در پیش بینی پاسخ بیماران این سرطان به این درمان به کار آیند، اهمیت به سزایی دارد. طی سالیان اخیر توانایی بیومارکرهای مختلف ژنتیکی در شناسایی و پیش آگهی در انواع مختلفی از سرطان از جمله سرطان کولورکتال بررسی و اثبات شده است. معمولا مدل های ساخته شده با استفاده از این بیومارکرها مدل های بسیار ساده ای هستند. یکی از چالش های موجود در این زمینه محدودیت عملکرد این مدل ها در پیش بینی پاسخ به درمان بیماران مبتلا به این سرطان است؛ معمولا سطح زیر نمودار ROC زیر 0.8 برای آن ها گزارش می شود. علاوه بر آن، در اکثر قریب به اتفاق پژوهش ها برای انتخاب بیومارکرهای بیان ژن مناسب، به صرف استفاده از معیار بیان متمایز ژنی اکتفا می شود. هدف و روش ها: با پیشرفت روزافزون توان محاسباتی سخت افزار های موجود، تمرکز پژوهشگران از علوم مختلفی نظیر آمار، مهندسی کنترل، مهندسی مخابرات، مهندسی نرم افزار، علوم کامپیوتر، بیوانفورماتیک و غیره به سوی علوم داده سوق داده شده-است. لذا، به استفاده از روش های هوش محاسباتی و باصطلاح یادگیری ماشینی در بسیاری از علوم از جمله علوم پزشکی اقبال گسترده ای شده است. از این روش ها عموما برای طبقه بندی، خوشه بندی، تحلیل سری های زمانی، رگرسیون و کاربرد های دیگر در علوم پزشکی استفاده می شود. در این مطالعه با استفاده از داده های بیان ژن بیماران مبتلا به سرطان راست روده پیشرفته موضعی،
پژوهشگران سیدمنوچهر حسینی پیلانگرگی (استاد راهنما)، مجید غنی ئی زارچ (استاد راهنما)، نیما محسنی (دانشجو)، سعید افشار (استاد مشاور)