عنوان
|
مقایسه جامع روش های ایجاد توابع انتقالی و توسعه الگوریتم های جدید برای تخمین منحنی نگهداشت آب خاک و منحنی هدایت هیدرولیکی خاک.
|
نوع پژوهش
|
پایان نامه
|
کلیدواژهها
|
دقت؛ رگرسیون فرآیند گوسی؛ روش های ترکیبی؛ قابلیت اطمینان؛ ویژگی های هیدرولیکی خاک
|
چکیده
|
منحنی نگهداشت آب خاک (SWRC ) و منحنی هدایت هیدرولیکی خاک (SHCC) به عنوان ویژگی های هیدرولیکی خاک تأثیر و نقش عمده ای در زمینه های هیدرولوژی، حفاظت محیط زیست، اکولوژی، پدولوژی و بسیاری از زمینه های مرتبط با خاک دارند. با استفاده از این ویژگی ها می توان مدل های جریان آب و املاح، نفوذ، زهکشی و برنامه ریزی آبیاری را تبیین و پیش بینی نمود. با این وجود، اندازه گیری مستقیم ویژگی های هیدرولیکی خاک در مزرعه و شرایط آزمایشگاه گران، وقت گیر و خسته کننده است و گاهی اوقات اندازه گیری آن ها برای مقیاس های بزرگ امکان پذیر نیست. بنابراین، توابع انتقالی (PTFs) به عنوان روشی غیرمستقیم برای پیش بینی ویژگی های هیدرولیکی خاک توسعه یافت. توابع انتقالی یکی از روش های غیر مستقیم برای برآورد ویژگی های هیدرولیکی خاک هستند که با استفاده از روش های متعدد بین پارامترهای دیر یافت خاک مانند منحنی نگهداری آب خاک و هدایت هیدرولیکی و پارامترهای زود یافت خاک مانند بافت، چگالی ظاهری و مقدار ماده آلی که اندازه گیری آن ها آسان، سریع و کم هزینه است و در پژوهش های علوم خاک متداول اند، ارتباط برقرار می کنند. اگرچه ایجاد PTFها در مقایسه با اندازه گیری مستقیم بسیار ساده می باشد، اما انتخاب بهترین روش برای ایجاد PTF، مسئله ای است که در این زمینه وجود دارد. با توجه به بررسی کامل منابع مشاهده شد که تا به حال مقایسه جامع الگوریتم های مختلف برای تخمین SWRC و SHCC انجام نشده است. به طوری که در بسیاری از موارد الگوریتم های مشابه در مقاله ها مورد بررسی قرار گرفته است و در مقابل الگوریتم های بسیاری نیز وجود دارند که مورد بررسی و مقایسه قرار نگرفته اند. همچنین هیچ ترکیبی از الگوریتم های مختلف برای افزایش بهبود دقت تخمین صورت نپذیرفته است. در مطالعه حاضر، 28 روش شامل رگرسیون خطی چندگانه (MLR)، رگرسیون غیرخطی (NLR)، رگرسیون فرآیند گوسی (GPR) با تابع کواریانس نمایی (GPR_E)، رگرسیون فرآیند گوسی با تابع کواریانس ماترن (GPR_M)، مدل خطی تعمیم یافته (GLM)، رگرسیون غیرخطی بر پایه چند جمله ای درجه سوم، شبکه عصبی پرسپترون چند لایه (MLP)، شبکه عصبی بیزین، شبکه عصبی پایه شعاعی (RBF)، شبکه عصبی مبتنی بر ماشین یادگیری افراطی (ELM)، ماشین بردار پشتیبان (SVM) با تابع های هسته شعاعی (SVM_G)، چند جمله ای (SVM_P) و خطی (SVM_L)، روش مدیری
|
پژوهشگران
|
حسین بیات (استاد راهنما)، مصطفی راستگو (دانشجو)، محرم منصوری زاده (استاد مشاور)
|