عنوان
|
Sobolev H1 geometry of the symplectomorphism group
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
Symplectic manifoldGeodesicHilbert manifoldFredholm operatorSobolev metricConjugate point
|
چکیده
|
For a closed symplectic manifold with compatible Riemannian metric g we study the Sobolev geometry of the group of all diffeomorphisms on M which preserve the symplectic structure. We show that, for sufficiently large s, the metric admits globally defined geodesics and the corresponding exponential map is a non-linear Fredholm map of index zero. Finally, we show that the metric carries conjugate points via some simple examples
|
پژوهشگران
|
جیمز بن (نفر اول)، علی سوری (نفر دوم)
|