مشخصات پژوهش

صفحه نخست /تشخیص موجودیت های هم مرجع با ...
عنوان تشخیص موجودیت های هم مرجع با استفاده از شبکه های عصبی عمیق
نوع پژوهش پایان نامه
کلیدواژه‌ها موجودیت، پایگاه داده، هم مرجع، شبکه های عصبی، کلاس بند، ویژگی های جداساز، پردازش زبان های طبیعی، لایه ی مخفی، کانوولوشن، پرسپترون، ماشین بردار پشتیبان
چکیده هدف از این پژوهش یافتن موجودیت هایی است که در یک متن، سند یا گفتگو وجود دارند و در دنیای واقعی به ماهیت های یکسانی اشاره دارند. برای این کار پایگاه داده ی conll 2012 shared task dataset را در اختیار داریم که تمام موجودیت های ما در این پایگاه داده موجود است. ما در این پژوهش دو موجودیت را در نظر خواهیم گرفت و سپس تصمیم می گیریم که آیا این دو موجودیت هم مرجع هستند یا خیر. برای تصمیم گیری درباره ی هم مرجع بودن موجودیت ها از شبکه های عصبی عمیق استفاده کرده ایم و آنها نقش کلاس بند سیستم ما را ایفا خواهند کرد. چون برای هر کلاس بند همواره نیاز به تعدادی ویژگی هست ما نیز شروع به استخراج ویژگی های مهم و جداساز کرده ایم. تاکنون از ویژگی های متعددی در کلاس بندی سیستم های تشخیص موجودیت های هم مرجع استفاده شده است. مانند ویژگی های عددی و رشته ای و یا ترکیبی. ما بنا به نیاز خود برای به دست آوردن انواع ویژگی های جداساز سراغ سه پایگاه داده رفته و ویژگی های موردنظر را از آن استخراج نموده ایم. ویژگی های عددی همواره در پردازش زبان های طبیعی از اهمیت بالایی برخوردار بوده اند. در پژوهش ما نیز این ویژگی ها به عنوان یک ویژگی مهم و جداساز لحاظ شده اند. برای ویژگی های رشته ای نیز از بردار ویژگی استفاده کرده ایم و به جای هر جمله یا کلمه یا عبارت بردار ویژگی آن به عنوان ورودی به کلاس بند داده شده است. در ابتدا یک شبکه ی عصبی ساده شروع به کلاس بندی داده های ورودی می نماید. این کلاس بند تنها از یک لایه ی مخفی استفاده می کند. نتیجه ی این کلاس بند موردقبول است اما با توجه به سادگی آن انتظار می رود با به کارگیری کلاس بندی پیچیده تر شاهد نتایج بهتری باشیم. در ادامه از پرسپترون چندلایه استفاده کرده ایم و نتایجش را با شبکه ی عصبی ساده مقایسه می نماییم. سپس به سراغ شبکه ی عصبی کانوولوشن می رویم. انتظار داریم این شبکه عملکرد بسیار خوبی داشته باشد. این شبکه را در حالت های مختلفی آزمایش می کنیم تا بهترین حالت را انتخاب کرده باشیم. بعد از اتمام کار با این شبکه نوبت به ماشین بردار پشتیبان است. هسته ی این ماشین را در مراحل مختلف تغییر داده و نتایج را مدل های قبلی مقایسه می نماییم
پژوهشگران محرم منصوری زاده (استاد راهنما)، منوچهر برقراری (دانشجو)، حسن بشیری نهنجی (استاد مشاور)