مشخصات پژوهش

صفحه نخست /Positive solutions of ...
عنوان Positive solutions of fractional differential equation with two pieces in chain interval and simultaneous Dirichlet boundary conditions
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Positive solutions, Fractional differential equation, Dirichlet boundary conditions, Caputo fractional derivative, Riemann--Liouville fractional integral
چکیده In the current study, by using some fixed point technique such as Banach contraction principle and fixed point theorem of Krasnoselskii, we look into the positive solutions for fractional differential equation ${}^cD^\alpha u(t)$ is equals to $f_1\left( t, u(t), {}^cD^{\beta_1} u(t), I^{\gamma_1} u(t) \right)$ and $f_2 \left( t, u(t), {}^c D^{\beta_2} u(t), I^{\gamma_2} u(t) \right)$, for each $t$ belongs to $[0, t_0]$ and $[t_0, 1]$, respectively, with simultaneous Dirichlet boundary conditions, where ${}^cD^\alpha$ and $I^\alpha$ denote the Caputo fractional derivative and Riemann--Liouville fractional integral of order $\alpha$, respectively. Some models are thrown to illustrate our results, too.
پژوهشگران وحید هدایتی (نفر اول)، محمداسماعیل سامعی (نفر دوم)