مشخصات پژوهش

صفحه نخست /Comparison of graphs ...
عنوان Comparison of graphs associated to ‎a‎ commutative ‎Artinian‎ ring
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Zero-divisor graph; Co-maximal graph; Boolean ‎ring; ‎Frobenius ‎ring
چکیده Let $R$ be a commutative ring with $1\neq 0$ and the additive group $R^+$‎. ‎‎‎‎‎The several graphs on $R$ have been introduced by many authors‎, ‎among zero-divisor graph $\Gamma_1(R)$‎, ‎co-maximal graph $\Gamma_2(R)$‎, ‎annihilator graph $\AG(R)$‎, ‎total graph $\T(\Gamma(‎R)‎)$‎, ‎cozero-divisors graph $\Gamma_c(R)$‎, ‎equivalence classes graph $\Gamma_{E}(R)$ and ‎the ‎Cayley graph $\Cay(R^‎+ ,‎\Z^*(R))$.‎ ‎Shekarriz et al‎. ‎(J‎. ‎Communications in Algebra‎, ‎40 (2012) 2798-2807) given some condition under which total graph is isomorphic to $\Cay(R^‎+ ‎,\Z^*(R))$.‎ ‎Badawi (J‎. ‎Communications in Algebra‎, ‎42 (2014) 108-121) shows that when ‎$‎R‎$ ‎is a reduced ring, ‎the annihilator graph is identical to the zero-divisor graph if and only if $R$ has exactly two minimal prime ideals‎. The purpose of this paper ‎is ‎c‎omparison of graphs associated to ‎a‎ commutative ‎Artinian ‎ring.‎‎‎‎‎‎‎‎ ‎Among ‎the ‎‎re‎sults‎, ‎we prove that for a commutative ‎finite‎ ring $R$ with $‎|‎\Max (R)|=n \geq 3$‎, ‎$ \Gamma_1(R) \simeq \Gamma_2(R)$ if and only ‎if‎ $R\simeq \mathbb{Z}^n_2$‎;‎ if and only ‎if‎ $\Gamma_1(R) \simeq \Gamma_{E}(R)$‎.‎ Also‎ the annihilator graph is identical to the ‎co‎zero-divisor graph if and only if $R$ ‎is a‎ ‎Frobenius ‎ring.
پژوهشگران مسعود قریشی (نفر اول)، کریم سامعی (نفر دوم)