مشخصات پژوهش

صفحه نخست /طبقه بندی تصاویر ابرطیفی ...
عنوان طبقه بندی تصاویر ابرطیفی مبتنی بر روش های محاسبات نرم با استفاده از داده های برچسب خورده محدود
نوع پژوهش پایان نامه
کلیدواژه‌ها دستهبندی، تصاویر ابرطیفی، یادگیری عمیق، شبکه عصبی کانولوشنی، میدان تصادفی مارکف
چکیده تصاویر ابرطیفی از جمله تصاویر هوایی به شمار میروند که تجزیه و تحلیل آنها یکی از زمینههای پرکاربرد در حوزه سنجش از دور به حساب میآید. برخی کاربردهای این تصاویر در گروه مسائل دستهبندی قرار میگیرند. دو چالش اصلی در رابطه با دستهبندی این تصاویر مطرح است: اول، برای دستهبندی این تصاویر نمونههای آموزشی کمی در دسترس است که این موضوع در کنار ابعاد بسیار زیاد دادههای ابرطیفی مشکلاتی در دستهبندی ایجاد میکند. دوم، عواملی نظیر نویزهای سنسور و مواد تشکیل دهنده اتمسفر باعث بروز مشکل تغییرات طیفی میشوند که موجب چالش برانگیز شدن شناسایی کلاسها و تخصیص نمونهها به آنها میشود. با پیشرفتهای اخیر در زمینه یادگیری ماشین، شبکههای عصبی به عنوان روشی کارآمد برای حل مسائل مختلف شناخته میشوند. در این پژوهش یک روش دستهبندی طیفی-مکانی تصاویر ابرطیفی مبتنی بر شبکه عصبی کانولوشنی و مدل تصادفی مارکف ارائه شدهاست. در این روش از تکنیکهای افزایش داده نظیر، استفاده از دوران و انعکاس، افزودن نویز گوسی، و افزایش داده مبتنی بر برچسب برای مقابله با مشکل تعداد نمونههای آموزشی کم، استفاده شدهاست. جهت جلوگیری از بیشبرازش، شبکه عصبی مورد استفاده فاقد لایههای تماما متصل بوده و در آن از نرخ حذف تصادفی بالا استفاده شدهاست. در مرحله آزمون، پس از به دست آمدن احتمال تعلق نمونههای مختلف به کلاسها توسط شبکه عصبی، برچسبهای نهایی با استفاده از الگوریتم min مبتنی بر α-Expansion - بهبود داده میشوند. cut که از دو سنسور Pavia University و Salinas ،Indian Pinesروش پیشنهادی بر روی سه مجموعه داده معیار به دست آمدهاند آزمایش شد. نتایج آزمایشها نشان داد که روش پیشنهادی در شرایط وجود مجموعه دادههای ROSIS و AVIRIS آموزشی محدود، در دستهبندی این سه مجموعه داده نسبت به روشهای دیگر عملکرد قابل قبولی دارد
پژوهشگران حسن ختن لو (استاد راهنما)، یوسف رضایی (استاد راهنما)، مجید راه بر (دانشجو)