مشخصات پژوهش

صفحه نخست /ارائه ی روشی جدید برای آنالیز ...
عنوان ارائه ی روشی جدید برای آنالیز ابر نقاط مبتنی بر تکنیک های یادگیری عمیق
نوع پژوهش پایان نامه
کلیدواژه‌ها ابر نقطه، یادگیری عمیق ،شبکه های کانوولوشنی، داده ی نامنظم، فاصله ی هاسدورف
چکیده چکیده: در سال های اخیر استفاده ی داده های سه بعدی در انواع کاربردها از جمله رباتیک، مکانیک و خودروهای بدون سرنشین افزایش یافته است. در این بین، ابر نقطه به علت منعطف بودن و دسترس پذیری آن یکی از مهم ترین انواع داده ی سه بعدی محسوب می شود. در نتیجه نیاز به روش هایی که این نوع داده را به طور خودکار آنالیز کنند رو به افزایش است. البته ابر نقطه دارای ذات نامرتبی است و هیچ گونه ساختار شبکه ای در آن وجود ندارد، همین مسئله آنالیز آن را چالش برانگیز کرده است. در بین روش های موجود برای کاربردهای بینایی ماشین، شبکه های کانوولوشنی از محبوب ترین و موفق ترین روش ها هستند. گرچه، این شبکه ها نیازمند داده ی ورودی با ساختار منظم هستند و آنالیز ابر نقطه ی نامنظم به طور مستقیم توسط این شبکه ها ممکن نیست. به همین علت اکثر محققان ابتدا داده ی ابر نقطه را به نوعی نمایش منظم تبدیل می کنند و سپس آنالیز آن را انجام می دهند. ولی این تبدیل نوع نمایش اغلب با پیش پردازش های سنگین و از دست رفتن اطلاعات مکانی همراه است. اخیرا تعدادی از تحقیقات جدید به آنالیز ابر نقطه بدون تغییر نوع نمایش آن پرداخته اند ولی هنوز چالش های بسیاری پیش روی آن هاست. در این پایان نامه به بررسی مسئله ی آنالیز ابر نقطه بدون تغییر نوع نمایش آن و با استفاده از شبکه های عصبی عمیق پرداخته شده است. یکی از چالش های روبروی آنالیز ابر نقطه ی خام، استخراج کارآمد اطلاعات ساختارهای هندسی محلی موجود در ابر نقطه است. روش پیشنهادی یک شبکه ی عصبی پشت سرهم است که شامل یک مرحله استخراج ویژگی های محلی و یک مرحله ی استخراج ویژگی نقاط مستقل است. مرحله استخراج ویژگی محلی از شبکه های کانوولوشنی الهام گرفته شده است و می تواند اطلاعات محلی موجود در ابر نقطه را به طور خودکار استخراج کند. این مرحله مشابه یک لایه ی کانوولوشنی دارای فیلترهایی است که می توانند در طی فرآیند آموزش شبکه آزادانه تنظیم شوند با این تفاوت که این فیلترها از نوع ابر نقطه هستند. علاوه بر آن، به جای عمل کانوولوشن (ضرب پیچشی)، فاصله ی هاسدورف برای استخراج ویژگی معرفی شده است که با محاسبه ی شباهت بین فیلترها و ساختارهای محلی ابر نقطه، ویژگی های این ساختارها را استخراج می کند. استخراج ویژگی نقاط مستقل با استفاده از پرسپترون چندلایه با اشتراک گذاری وزن ها انجام می شود. در نهایت یک
پژوهشگران حسن ختن لو (استاد راهنما)، فاطمه عزیزملایری (دانشجو)