مشخصات پژوهش

صفحه نخست /Green Extracellular Synthesis ...
عنوان Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Antimicrobial agents; Biosynthesis; Nanoparticles; 16S rRNA
چکیده Silver nanoparticles (AgNPs) are among the most effective antimicrobial agents that are used in the medi- cine and pharmaceutics. During the past decades, metal nanoparticles synthesis through application of the biological meth- ods has increasingly been used, as the biologically synthesized particles are mostly non-toxic as well as effective. Objectives: The main goal for undertaking the present investigation was to evaluate the extracellular synthesis of the AgNPs by a native thermophilic Bacillus Sp . AZ1 that was isolated from a hot spring in Ardebil province. Subsequently the antimicrobial potentials of the nanoparticle was evaluated against several human pathogenic organisms. Materials and Methods: The biosynthesized AgNPs were confirmed visually by appearance of a dark brown color for- mation in the mixture as well as silver surface plasmon resonance band by using UV-Visible spectroscopy. The AgNPs were further characterized by SEM, EDX and TEM. The antimicrobial activity of the AgNPs was investigated using Salmonella typhi , Escherichia coli , Staphylococcus epidermis , and Staphylococcus aureus , by applying disk diffusion method. Results: Identification of the strain AZ1 by the 16S rRNA sequence analysis showed 99% sequence homology between this strain and B. licheniformis . The obtained UV-Visible spectrum of the aqueous medium containing silver ion, showed a peak at 425 nm which indicates a correspondence to the plasmon absorbance of the silver nanoparticles. The biosynthe- sized AgNPs were found to be in the size range of ~7-31 nm with spherical the shape. Studies regarding the antibacteri- al effect of the particles showed the highest inhibitory effect against the two strains; E . coli , and S . typhi , respectively. Conclusions: Our study presents a simple green synthesis process for the production of an extracellular nanoparticles which is environmental friendly. Biosynthesis of the AgNPs by a thermophilic bacillus from the hot spring (Qeynarjeh, Ard
پژوهشگران علی دلجو (نفر اول)، صمد گودرزی (نفر دوم)