عنوان
|
تشخیص خودکار رفتار انسان در تصاویر ویدیویی با استفاده از روش های کلاس بندی
|
نوع پژوهش
|
پایان نامه
|
کلیدواژهها
|
بازشناسی رفتار، پردازش تصویر و ویدیو، روشCLLC، شبکه عصبی مصنوعی، شبکه عصبی موجکی،.
|
چکیده
|
تشخیص و بازشناسی رفتار،به عنوان راهی کارآمد جهت شناسایی خودکار رفتار انسانی، در بسیاری از زمینه های مهم و کاربردی مانند پزشکی،جامعه شناسی و یا امنیتی مورداستفاده و توجه بسیاری از جوامع قرارگرفته است. با قدرت بخشیدن به حسگرها و یادگیری ماشین،می توان عملکرد تشخیص سامانه های مرتبط با بازشناسی رفتار را تقویت کرد.در چند سال گذشته،بسیاری از روش ها،برای بازشناسی رفتار و حل مشکلات پیاده سازی آن پیشنهادشده است که نتایج مؤثر و چشمگیری هم به همراه داشته است، اما به دلیل وجود زوایای محدود، تغییرات نور و حرکت های مکرر دوربین، این مسئله را به یکی از مسائل پیچیده تبدیل کرده است. باوجود تعدد حالت های بسیار زیاد برای شناسایی رفتار انسانی و وجود مرز باریکی بین رفتار عادی و رفتارهای مخرب یا غیرعادی، نمی توان ادعای طراحی سامانه های خبرۀ کامل و بدون خطا را مطرح نمود و درصدد شناسایی دقیق رفتارهای انسانی بود؛ اما می توان با بهینه سازی و طبقه بندی بهتر،این خطا را کمتر کرد.در این رساله به طور خاص،تشخیص و بازشناسی رفتار انسانی را با استفاده از پردازش تصویر و روش های طبقه بندی هوشمند بررسی خواهیم نمود و به دنبال بهبود عملکرد از طریق به کارگیری روشی جدید مبتنی بر روش CLLC و استفاده از شبکه های عصبی مصنوعی هستیم. برای طبقه بندی نیز از شبکه عصبی موجکی استفاده گردید که این شبکه موفق به رسیدن به صحت بالا در طبقه بندی شد.
|
پژوهشگران
|
حسن ختن لو (استاد راهنما)، یاسین معصومی (دانشجو)
|