Research Info

Home /Existence of Solutions for a ...
Title Existence of Solutions for a Singular Fractional q-Differential Equations under Riemann–Liouville Integral Boundary Condition
Type JournalPaper
Keywords Caputo q-derivative; singular sum fractional q-differential; fixed point; equations; Riemann–Liouville q-integral
Abstract We investigate the existence of solutions for a system of m-singular sum fractional qdifferential equations in this work under some integral boundary conditions in the sense of Caputo fractional q-derivatives. By means of a fixed point Arzelá–Ascoli theorem, the existence of positive solutions is obtained. By providing examples involving graphs, tables, and algorithms, our fundamental result about the endpoint is illustrated with some given computational results. In general, symmetry and q-difference equations have a common correlation between each other. In Lie algebra, q-deformations can be constructed with the help of the symmetry concept
Researchers Mustafa Inc (Not In First Six Researchers), Francisco Martinez (Fifth Researcher), Mohammed K. A. Kaabar (Fourth Researcher), Shao-Wen Yao (Third Researcher), (Second Researcher), Mohammad Esmael Samei (First Researcher)