Title
|
On the Efficiency of OpenACC-aided GPU-Based FDTD Approach: Application to Lightning Electromagnetic Fields
|
Type
|
JournalPaper
|
Keywords
|
graphics processing unit (GPU); OpenACC (open accelerators); finite difference time domain (FDTD); lightning magnetic fields
|
Abstract
|
An open accelerator (OpenACC)-aided graphics processing unit (GPU)-based finite difference time domain (FDTD) method is presented for the first time for the 3D evaluation of lightning radiated electromagnetic fields along a complex terrain with arbitrary topography. The OpenACC directive-based programming model is used to enhance the computational performance, and the results are compared with those obtained by using a CPU-based model. It is shown that OpenACC GPUs can provide very accurate results, and they are more than 20 times faster than CPUs. The presented results support the use of OpenACC not only in relation to lightning electromagnetics problems, but also to large-scale realistic electromagnetic compatibility (EMC) applications in which computation time efficiency is a critical factor.
|
Researchers
|
Farhad Rachidi (Fourth Researcher), mohammad azadifar (Third Researcher), sajad mohamadi (First Researcher), hamidreza Karami (Second Researcher)
|