Research Info

Home /Ore geology, fluid inclusions ...
Title Ore geology, fluid inclusions and O-S stable isotope characteristics of Shurab Sb-polymetallic vein deposit, eastern Iran
Type JournalPaper
Keywords Sb-polymetallic vein; Epithermal; Fluid inclusions; Stable isotopes; Lut Block; Iran
Abstract The Shurab Sb-polymetallic mineralization is a subvolcanic rock-hosted epithermal deposit and located in north Lut Block, eastern Iran. It is one of the most important deposits of the Iranian East Magmatic Assemblage (IEMA) in which numerous Middle-Cenozoic precious and base metals deposits occur. The main lithological units in the area are Paleogene subvolcanic intrusions and minor Jurassic sedimentary rocks. Mineralization occurs as veins in a series of NW-SE and E-W trending faults and fractures in the Eocene-Oligocene dacite and andesite subvolcanic rocks. Mineralization at the Shurab deposit can be subdivided into four stages: pre-ore stage, Cu-Zn-Pb ore stage, Sb-Ag±As ore stage and post-ore stage. The total sulfide content of the veins in the area is variable, ranging from 1 to 50%, and is dominated by stibnite, chalcopyrite, galena, Fe-poor sphalerite and pyrite with minor chalcostibite, Ag-tetrahedrite and bournonite; gangue minerals are mainly quartz and calcite. Silicic, argillic, propylitic, and sericitic, are the most obvious wall rock alterations. Microthermometric measurements of primary liquid-rich fluid inclusions in quartz and sphalerite indicate that the veins were formed at temperatures between 115 and 290 °C from fluids with salinities between 0.7 and 16.2 wt% NaCl eq., suggesting an epithermal origin. The 34S values of pyrite, chalcopyrite and galena vary between -2.5 and 0.8‰, and 18O values of quartz range between 12.5 and 14.8‰. It is inferred that the Shurab mineralization is of epithermal origin, related to an Eocene-Oligocene magmatic geothermal system involving fluids of magmatic and meteoric origin.
Researchers Bruce Yardley (Third Researcher), Ebrahim Tale Fazel (Second Researcher), behzad mehrabi (First Researcher)