2025 : 4 : 22
Sayyed Saeed Moosavi

Sayyed Saeed Moosavi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 51663795200
HIndex:
Faculty: Faculty of Agriculture
Address:
Phone: 08134425400 (380)

Research

Title
Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress
Type
JournalPaper
Keywords
Morpho-physiological traits Proteomics ,Protein profile ,Root traits ,Two-dimensional electrophoresis Wild wheat.
Year
2020
Journal PLANT PHYSIOLOGY AND BIOCHEMISTRY
DOI
Researchers Sayyed Saeed Moosavi ، ، mohammad reza Abdollahi ، sattar tahmasebi enferadi ،

Abstract

Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most droughttolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and droughtstress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarityidentified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.