به کمک اینترنت اشیا برنامه ها و دستگاه ها ی مختلف می توانند از طریق اتصال اینترنت با یکدیگر و حتی انسان تعامل و صحبت کنند. از آنجا که دستگاه ها ی اینترنت اشی ا ممکن اس ت اطالعات حساس را منتقل و مدیریت کنند، برا ی دستیابی به موفقیت در این شبکه ها، الزماست سازو کارهای پیشرفتهای ایجاد شود و هر زمانی که در شبکه اینترنت اشیا حمالت و تهدیدات سایبری رخ میدهد، از سطوح امنیتی مناسب برا ی شناسایی و کاهش این تهدیدات استفاده شود. همچنین اکثر دستگاه های اینترنت اشیا طراحی ساده ای دارند و نگرانی های امنیتی همیشه به عنوان بخشی از چرخه تولی د دستگاها ی IoT در نظر گرفته نمی شود ،به همین دلیل شبکه اینترنت اشیاء مستعد حمالتی چون انکار سرویس و انکار سرویس توزیع شده هستند. در نتیجه ایجاد یک سیستم امنیتی با محوریت متمرکز بودن برا ی جلوگیر ی از حمالت در این شبکه ها یک ضرورت و نیاز اساسی است. در این پایان نامه، با استفاده از شبکه های نرم افزار محور ، یک سیستم پاسخ به نفوذ برای شناسایی و جلوگیری از حمالت انکار سرویس بر روی شبکه اینترنت اشیاء پیشنهاد داده می شود. این سیستم پیشنهادی از قابلیت های شبکه های نرم افزار محور استفاده می کند و دارای سه ماژول اصلی می باشد که در ماژول تشخیص آن، از الگوریتم های یادگیری ماشین و شبکه های عصبی استفاده می شود . تمرکز این پژوهش بر روی حمالت flood-UDP بوده است و الگوریتم های یادگیری ماشین و شبکه عصبی استفاده شده، برای تشخیص این نوع حمله آموزش داده شده اند. این سیستم در کنترلر شبکه نرم افزار محور مستقر می شود و با پایش مداوم جریان های ترافیک، سالم بودن یا حمله بودن جریان های ورودی را تشخیص می دهد. با توجه به نتایج پیاده سازی روش پیشنهادی در این پژوهش، مشخص شد که سیستم پیشنهادی عالوه بر دقت باالی تشخیص حمالت، قادر است که بعد از تشخیص حمله از آن جلوگیری کند و وضعیت شبکه را به حالت قبل از حمله بازگرداند. نتایج حاصل شده نشان داد که دقت این روش برای تشخیص بر روی داده های آزمایش 6.99 %می باشد.