2025 : 4 : 22
Pouria Assari

Pouria Assari

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 35253362500
HIndex:
Faculty: Faculty of Science
Address:
Phone: 08138213642

Research

Title
Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method
Type
JournalPaper
Keywords
Nonlinear boundary integral equation Laplace’s equation Discrete Galerkin method Moving least squares (MLS) method Meshless method Error analysis
Year
2018
Journal APPLIED NUMERICAL MATHEMATICS
DOI
Researchers Pouria Assari ، Mehdi Dehghan

Abstract

The main purpose of this article is to investigate a computational scheme for solving a class of nonlinear boundary integral equations which occurs as a reformulation of boundary value problems of Laplace’s equations with nonlinear Robin boundary conditions. The method approximates the solution by the Galerkin method based on the use of moving least squares (MLS) approach as a locally weighted least square polynomial fitting. The discrete Galerkin method for solving boundary integral equations results from the numerical integration of all integrals appeared in the method. The numerical scheme developed in the current paper utilizes the non-uniform Gauss–Legendre quadrature rule to estimate logarithm-like singular integrals. Since the proposed method is constructed on a set of scattered points, it does not require any background mesh and so we can call it as the meshless local discrete Galerkin (MLDG) method. The scheme is simple and effective to solve boundary integral equations and its algorithm can be easily implemented. We also obtain the error bound and the convergence rate of the presented method. Finally, numerical examples are included to show the validity and efficiency of the new technique and confirm the theoretical error estimates.