2025 : 4 : 21
Pouria Assari

Pouria Assari

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 35253362500
HIndex:
Faculty: Faculty of Science
Address:
Phone: 08138213642

Research

Title
Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions
Type
JournalPaper
Keywords
Nonlinear boundary integral equation, Laplace's equation, thin plate spline, discrete collocation method, meshless method, error analysis
Year
2019
Journal INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
DOI
Researchers Pouria Assari ، Mehdi Dehghan

Abstract

This article describes a technique for numerically solving a class of nonlinear boundary integral equations of the second kind with logarithmic singular kernels. These types of integral equations occur as a reformulation of boundary value problems of Laplace's equations with nonlinear Robin boundary conditions. The method uses thin plate splines (TPSs) constructed on scattered points as a basis in the discrete collocation method. The TPSs can be seen as a type of the free shape parameter radial basis functions which establish effective and stable methods to estimate an unknown function. The proposed scheme utilizes a special accurate quadrature formula based on the non-uniform Gauss–Legendre integration rule for approximating logarithm-like singular integrals appeared in the approach. The numerical method developed in the current paper does not require any mesh generations, so it is meshless and independent of the geometry of the domain. The algorithm of the presented scheme is accurate and easy to implement on computers. The error analysis of the method is provided. The convergence validity of the new technique is examined over several boundary integral equations and obtained results confirm the theoretical error estimates.