معادلات دیفرانسیل تاخیری در بسیاری از زمینه های علوم و مهندسی ظاهر می شوند. به عنوان مثال، دینامیک جمعیت، همه گیری بیماری ها، سنتیک فرآیندهای دارویی، مسائل کنترل بهینه و ... توسط این معادلات بیان می شوند. تمام فرآیندها برای کامل شدن نیازمند زمان هستند، در اکثر موارد لازم است که به طور صریح زمان های این فرآیند را جهت دستیابی به مدل ریاضی آن ها بیابیم. هدف ما از این پایان نامه معرفی معادلات دیفرانسیل تاخیری و حل عددی این گونه مسائل می باشد. روش در نظر گرفته شده در این پایان نامه روشی مبتنی بر استفاده از موجک ها (موجک هار) است. موجک ها به دلیل اینکه توابع موضعی مناسبی برای تقریب توابع هستند و ارتباط با الگوریتم های سریع به طور چشم گیری جایگاه خود را در روش های عددی برای حل سیستم های دینامیکی به اثبات رساندند. این روش ها حل سیستم های دینامیکی را به حل یک دستگاه معادلات جبری کاهش می دهند. استفاده از موجک ها به عنوان پایه های متعامد از آن جهت حائز اهمیت است که سبب می شود دستگاه حاصل از گسسته سازی معادلات دیفرانسیل دستگاهی با ماتریس ضرایب تنک باشد که سهم عمده ای در تسریع و کاهش هزینه ی محاسباتی حل معادلات خواهد داشت. علاوه بر این، مثال های عددی ارائه شده کارایی و دقت روش پیشنهادی را تصدیق می کنند.