1404/02/01
محرم منصوری زاده

محرم منصوری زاده

مرتبه علمی: دانشیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 25923564500
دانشکده: دانشکده فنی و مهندسی
نشانی: همدان، دانشگاه بوعلی سینا، دانشکده مهندسی، گروه مهندسی کامپیوتر
تلفن: 08131406381

مشخصات پژوهش

عنوان
انتخاب ویژگی برای طبقه بندی با استفاده از محاسبات تکاملی
نوع پژوهش
پایان نامه
کلیدواژه‌ها
طبقه بندی، محاسبات تکاملی، انتخاب ویژگی، انتخاب نمونه
سال 1402
پژوهشگران مهسا بوجاری(دانشجو)، حسن ختن لو(استاد راهنما)، محرم منصوری زاده(استاد راهنما)

چکیده

در بسیاری از مسائل یادگیری ماشین تعداد زیادی ویژگی وجود دارد که همه این ویژگی ها ضروری نیستند؛ زیرا بسیاری از آنها اضافی یا حتی نامربوط هستند که ممکن است عملکرد یک الگوریتم طبقه بندی را کاهش دهند. هدف از انتخاب ویژگی، حل این مشکل با انتخاب تنها زیرمجموعه کوچکی از ویژگی های مرتبط از مجموعه ویژگی بزرگ اصلی است. با حذف ویژگی های نامربوط و زائد، انتخاب ویژگی می تواند ابعاد داده ها را کاهش دهد، روند یادگیری را تسریع کند، مدل آموخته شده را ساده سازی کند و یا کارایی را افزایش دهد. انتخاب ویژگی به دلیل دارا بودن فضای جستجوی بزرگ، کار دشواری است. از بین روش های مختلف موجود برای انتخاب ویژگی، روش های محاسبات تکاملی به دلیل توانایی یا پتانسیل جستجوی سراسری خود برای حل مسئله انتخاب ویژگی در سال های اخیر توجه زیادی را به خود جلب کرده اند. هدف این پژوهش، بهبود دقت طبقه بندی در مسائل مساله انتخاب ویژگی با استفاده از الگوریتم های تکاملی است. مهم ترین چالش های مسئله انتخاب ویژگی، مقیاس پذیری، هزینه محاسباتی، روش های جستجو، معیار ارزیابی و تعداد نمونه ها است. در این پژوهش برای کاهش هزینه محاسباتی به ویژه در مقیاس بزرگ از روشی برای ترکیب انتخاب ویژگی و انتخاب نمونه استفاده شده است و این روش به عنوان روش پایه در همه آزمایش ها استفاده شده است. برای بهبود دقت طبقه بندی از ترکیب روش پایه با الگوریتم های تکاملی مختلف به عنوان روش جستجو استفاده شده است و از 13 مجموعه داده برای ارزیابی روش پیشنهادی استفاده شده است. پس از اجرای آزمایش های مختلف دقت طبقه بندی نسبت به روش پایه در همه 13 بهبود داده شده است.