به طور خلاصه، سیستم پیشنهادگر یک سیستم هوشمند بازیابی اطلاعات است که بر اساس بازخورد های کاربر در گذشته (مثلا نمرات، امتیازات یا لایک ها) فهرستی از پیشنهاد ها (مثلا فیلم ها یا کتابها) که کاربر احتمالا به آن ها علاقه مند است را پیش بینی می کند. همچنین در زمینه ی پژوهشی پیشنهاد شخصی سازی شده، نوعی از پیشنهاد به نام پیشنهاد توضیح پذیر وجود دارد که پاسخگوی این پرسش است که چرا یک محصول خاص به کاربر پیشنهاد شده است؛ یعنی با ذکر شدن توضیحاتی برای پیشنهاد ها هدف سیستم از ارائه آن ها روشن می شود. توضیح پذیری پیشنهادها شفافیت سیستم را بهبود می دهد و به کاربران در انتخاب و تصمیم گیری میان کالاهاکمک می کند. به طور کلی پیشنهاد توضیح پذیر شفافیت، اقناع، کارآمدی، اعتماد، اعتبار و در ادامه رضایت مشتریان را بهبود می دهد. یکی از رویکرد های اصلی پیشنهاد رویکرد پالایش اشتراکی است که بر اساس تعاملات قبلی بین کاربران و کالاها (مثلا امتیازات) علاقه ی کاربران در آینده را پیش بینی می کند. عموما امتیازات کاربران به کالا ها در یک ماتریس دو بعدی به نام ماتریس کاربرد ثبت می شود که کاربران و کالاها ابعاد آن را تشکیل می دهند. به طور خلاصه این رویکرد بر اساس امتیازات ثبت شده و با کمک مقایسه و شباهت یابی میان کاربران و کالاها، امتیازات ثبت نشده عناصر خالی ماتریس کاربرد را پیش بینی می کند. اولین چالشی که در رویکرد پالایش اشتراکی وجود دارد، چالش خلوت بودن ماتریس امتیازات (محدودیت داده) است زیرا همه ی کاربران به همه ی کالاها نمره نداده اند. در کنار این چالش، چالش عدم شفافیت در نتایج سیستم پیشنهادگر هم وجود دارد. این مشکل اساسا ازعدم ارائه دلایل برای چرایی فهرست پیشنهاد ها ناشی می شود. برای غلبه بر این چالش ها ایده ی استفاده از نظرات کاربران مطرح شد، پژوهشگران این حوزه به تازگی از نظرات کاربران به عنوان داده های کمکی برای رفع چالش کمبود داده بهره می گیرند. واضح است که نظرات کاربران مانند امتیازات دربرگیرنده ی ترجیحات آن ها نسبت به کالاها می باشد با این تفاوت که نظرات کاربران، بر خلاف امتیازات آن ها که فقط بیانگر ترجیحات کلی کاربران نسبت به کالاها است، با جزئیات دقیق تری ترجیحات کاربران نسبت به ویژگی های مختلف کالاها را توصیف می کنند. همچنین امروزه، تولید متن ماشینی یکی از موضوعات موردتوجه محققان در حوز