روش های یادگیری نیمه نظارتی مبتنی بر گراف اغلب بر روی مسائل تک برچسبی متمرکز و پیاده سازی شده اند، درصورتی که بسیاری از مسائل دنیای واقعی به صورت چند برچسبی هستند، در این مقاله یک روش نیمه نظارتی ترکیبی بنام LGC+ML-KNN برای برچسب زنی تصاویر به صورت چند برچسبی ارائه داده ایم که از ترکیب روش یادگیری نیمه نظارتی مبتنی بر گراف (LGC) و یادگیری چند برچسبی (ML-KNN) تشکیل شده است .روش ارائه شده به دلیل استفاده از یادگیری نیمه نظارتی و مشارکت دادن تمام نمونه ها و پیش بینی برچسب های اولیه و آموزش یادگیر ML-KNN با تعداد نمونه برچسب خورده بیشتر دارای دقت بهتری نسبت به روش های موجود و کارهای انجام شده هست. روش ارائه شده بر چندین مجموعه داده استاندارد آزمون شده است. نتایج آزمایش ها نشان می دهد که عملکرد روش ارائه شده بخصوص در مواردی که تعداد نمونه برچسب دار بسیار پایین است بهتر می باشد.