با رشد سریع تعداد تصاویر تولیدشده در صفحات وب و شبکه های اجتماعی سازمان دهی و بازیابی تصاویر به روشی مؤثر و کارا به وسیله موتورهای جستجو یکی از حوزه های پژوهشی فعال می باشد. موتورهای جستجو در بازیابی داده های متنی دقت و سرعت مناسبی دارند و این امر باعث شده است تا پژوهشگران جهت بازیابی تصاویر، ابتدا مجموعه دادگان حاوی تصاویر را با اطلاعات متنی برچسب زنی کنند و سپس بازیابی را در حوزه متن انجام دهند. برچسب زنی تصاویر می تواند به صورت دستی یا خودکار انجام گیرد. درروش دستی، برچسب زنی تصاویر توسط افراد خبره انجام می پذیرد. به دلیل رشد سریع تعداد تصاویر تولیدشده در صفحات وب و شبکه های اجتماعی، استفاده از این روش بسیار وقت گیر، خسته کننده و پرهزینه و عملاً غیرقابل استفاده می باشد، ازاین رو روش های برچسب زنی خودکار تصاویر معرفی شدند. در سامانه های بازیابی تصویر، برچسب زنی خودکار تصویر به عنوان یک مرحله اولیه و پیش پردازشی در سیستم در نظر گرفته می شود. یادگیری نیمه نظارتی نوعی از روش های یادگیری ماشین است که از داده های برچسب دار و بدون برچسب استفاده می کند. روش های یادگیری معمول به دودسته یادگیری با نظارت و بدون نظارت تقسیم می شود. در روش های یادگیری بدون نظارت همه داده های آموزشی بدون برچسب بوده اند و در یادگیری با نظارت همه داده های آموزشی دارای برچسب هستند. هدف از یادگیری نیمه نظارتی این است که به این پرسش پاسخ داده شود که چگونه می توان با ترکیب داده های برچسب دار و بدون برچسب رفتار یادگیری را تغییر داد و الگوریتم هایی را طراحی کرد که از فواید این ترکیب ها استفاده کنند. یادگیری نیمه نظارتی در یادگیری ماشین و داده کاوی بسیار موردعلاقه است زیرا به آسانی می توان با داده های بدون برچسب در دسترس کارایی یادگیری بانظارت را با توجه به عدم دسترسی و گران بودن داده های با برچسب بالا برد. توجه به روشهای یادگیری نیمه نظارتی مبتنی بر گراف در سالهای اخیر رشد چشمگیری یافته است. دلیل این امر را می توان ارائه ساختار شباهت و تفاوت برای تصاویر بر اساس گراف دانست که در آن خواصی نظیر همسایگی راس ها، فاصله و مسیرهای بین راس ها و همچنین توازن و تراکم راس ها در نواحی گراف با مفاهیم طبیعی قابل درک برای انسان قرابت زیادی دارد.پژوهش حاضر در مورد برچسب زنی تصاویر با استفاده از روش های یادگیری نیمه نظ