Compared to noncalcareous soils, data on the soil-to-plant transfer of heavy metals and their response to sewage sludge (SS) in calcareous soils with diverse properties are limited. Cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) transfer from soil to cabbage (Brassica oleracea L. var. capitata) under greenhouse conditions in 30 diverse soils amended with two types of sewage sludge (non-spiked and spiked with heavy metals) were investigated. Three transfer factors were calculated for heavy metals in three treated soils including control soils (CS), soils treated with non-spiked SS (NSS), and soils treated with spiked SS (PSS). The bio-concentration factor of heavy metals from soil to root (BCFRoots) in cabbage in three treatments was as follows: CS: Pb > Cu > Co > Zn > Ni; NSS: Pb > Co > Cu Zn > Ni; and PSS: Pb> Cd> Zn> Co > Cu > Ni. The same order was found for the bio-concentration factor of heavy metals from soil to shoots (BCFShoots) in PSS, and in CS and NSS treatments except that the position of Co, Cu, and Zn was changed. Based on the heavy metals translocation from plant roots to shoots, Cd, Cu, and Zn were the heavy metals that posed the highest risk due to the higher shoot content in all treatments, whereas Ni and Pb posed relatively lesser risk. Generally, the percentage of sand and silt in BCFRoots and BCFShoots was quite effective for Co, Ni, and Zn and it seems that soil texture is an important variable in heavy metals bioavailability. In conclusion, our findings highlight the significance of using SS to increase cabbage growth in soils contaminated with heavy metals. Furthermore, cabbage may be a good choice for phytoremediation of heavy metalcontaminated calcareous soils in terms of soil remediation.