This study focused on acid neutralization reactions and the effects of water composition on the release and mobility of metals from mine tailings. The aims of this study were to: investigate leaching of metals from neutral mine tailings, determine the factors responsible for metal leaching, and investigate potential metal filtering by the soil. Tailings and soil samples were collected from an iron mine and analyzed. Equilibrium thermodynamic data and metal fractionation were then used to predict precipitation/ dissolution of minerals and ion adsorption/desorption. Three column experiments were designed. The first column was filled with tailings, while the second column contained tailings above a layer of soil; both were leached with distilled water as rainfall. The third column was packed with soil and percolated with synthetic groundwater. The results indicated that iron (Fe) and zinc (Zn) mobility are mainly controlled by precipitation–dissolution mechanisms, while sorption onto oxides and carbonates limit the mobility of copper (Cu) and nickel (Ni). Cadmium (Cd) and manganese (Mn) mobility are affected by both mechanisms. Water discharging from column 3 (soil washed with groundwater) contained high concentrations of dissolved metals, indicating that water composition played an important role in metal mobility. Buffering minerals like carbonates and hornblende, chlorite, and albite decreased acid generation.