2025 : 4 : 21
Mohammad Esmael Samei

Mohammad Esmael Samei

Academic rank: Associate Professor
ORCID: 0000-0002-5450-3127
Education: PhD.
ScopusId: 55938219900
HIndex: 23/00
Faculty: Faculty of Science
Address: Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
Phone: 08131406263

Research

Title
Optimum solution of ({$k$},{$\gimel$})-Hilfer FDEs by $A$-condensing operators and the incorporated measure of noncompactness
Type
JournalPaper
Keywords
Best proximity point (pair); measure of noncompactness; Hilfer fractional differential equation
Year
2024
Journal Journal of Inequalities and Applications
DOI
Researchers Amlan Kumar Patra ، Deepesh Kumar Patel ، Pradip Ramesh Patle ، Mohammad Esmael Samei

Abstract

The notion of $\mathcal{A}$-condensing operators via measure of noncompactness is proposed, which retains the existing classes of condensing operators. Results concerning the existence of best proximity point (pair) of cyclic (noncyclic) $\mathcal{A}$-condensing operators along with the coupled best proximity point theorem for cyclic $\mathcal{A}$-condensing operators have been formulated. An application to $(k, \gimel)$-Hilfer fractional differential equation of order $2< p<3$, type $q\in [0,1]$ satistfying some boundary conditions is presented. The concerned paper is first to investigate the optimum solution of such a generalized fractional differential equation. The hypothesis involved in the investigation is independent of the incorporated measure of noncompactness, thereby making our result better in application than that present in the literature. Moreover, added numerical examples validates the theoretical conclusions.