2025 : 4 : 21
Mohammad Esmael Samei

Mohammad Esmael Samei

Academic rank: Associate Professor
ORCID: 0000-0002-5450-3127
Education: PhD.
ScopusId: 55938219900
HIndex: 23/00
Faculty: Faculty of Science
Address: Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
Phone: 08131406263

Research

Title
A certain coupled system of $q$-FDEs on two consecutive intervals under Dirichlet conditions via Krasnoselskii's theorem
Type
Presentation
Keywords
nonlinear fractional equation; fractional $q-$differential equation; Dirichlet boundary conditions ;Riemann--Liouville $q-$integral
Year
2023
Researchers Mohammad Esmael Samei ، Mohammad Izadi ، Mohammed K. A. Kaabar

Abstract

In this study, we use certain mathematical tools to analyze the solutions of a system of fractional $q$-differential equation ${}^C\mathbb{D}_{q}^{\sigma_i} [\wp](\mathfrak{t}) = \mathfrak{w}_i( \mathfrak{t}, \wp(\mathfrak{t}), {}^C\mathbb{D}_{q}^{{}_i\nu_{j}} [\wp](\mathfrak{t}), \mathbb{I}_{q}^{{}_{i}\nu_j} [\wp] (\mathfrak{t}) )$, $i=~1$ whenever $\mathfrak{t} \in [0, \mathfrak{t}_0]$, and $i=2$ whenever $\mathfrak{t} \in [\mathfrak{t}_0, 1]$, for $j=1,2$, such as fixed point theorem of Krasnoselskii and Banach contraction principle, under simultaneous Dirichlet boundary conditions. Here, we use standard definitions of the Liouville-Caputo fractional type $q-$derivative and Riemann-Liouville $q-$integral. Some illustrative examples with numerical results are discussed, too.