استفاده از اصل انقباض باناخ و قضیه جایگزین غیرخطی لری-شودر شرایط کافی را برای وجود و یکتایی راه\/حل\/هایی برای مسایل مقدار مرزی برای معادلات دیفرانسیل کسری با شرایط انتگرال کسری شامل مشتق کسری کاپوتو ایجاد می\/کند. وجود اه\/حل\/های غیرمنفی برای یک کلاس از مساله مقدار مرزی معادلات دیفرانسیل کسری $${}^c\mathcal{D}^\sigma [k](t) + w \big(t, k(t), {}^c\mathcal{D}^\nu [k](t)\big)=0$$ برای $t\in J$، $\alpha \in (3, 4]$ و $\beta >1$ به طوریکه $\alpha - \beta \geq 1$ با شرایط مرزی $u(0)=u'(0) = u''(0)=0$ و $u(1) = u(\xi)$ برای $\xi \in J$ را مورد بررسی قرار می گیرد. این پایان نامه برگرفته از پژوهش نویسندگان در مرجع [8] می باشد.