امروزه، مرکبات به ویژه پرتقال نقش به سزایی در رژیم غذایی انسان ها دارد و ارزیابی ویژگی های کیفی آن از اهمیت ویژه ای برخوردار است. هدف از این پژوهش، بررسی و پیش بینی ویژگی های بیوشیمیایی پرتقال خونی با استفاده از تکنیک های پردازش تصویر و شبکه های عصبی مصنوعی است. در این آزمایش، ابتدا میزان ویتامین ث، محتوای قندی و مقدار pH با استفاده از روش های آزمایشگاهی مختلف به دست آمد. سپس با کمک تکنیک پردازش تصویر تعداد 108 ویژگی بافتی و 57 ویژگی رنگی از تصاویر اخذ شده از نمونه های پرتقال در فضاهای رنگی CIElab، RGB، HSV و HSI استخراج شد و با بهره گیری از روش شبکه های عصبی مصنوعی، ویژگی های بیوشیمیایی تخمین زده شدند. جهت ارزیابی پارامترها و انتخاب بیشترین دقت پیش بینی، از یک شبکه عصبی پیشخور با الگوریتم یادگیری لورنبرگ- مارکوارت با تعداد نرون ها و توابع انتقال متفاوت در لایه های پنهان و خروجی استفاده شد. در نهایت، با بکارگیری بهترین نوع شبکه عصبی و با استفاده از 165 ویژگی بافتی-رنگی، میزان ویتامین ث، محتوای قندی و pH، به ترتیب با ضرایب همبستگی 950/0، 968/0 و 884/0 تخمین زده شدند. بنابرین، با درنظر گرفتن ضریب همبستگی مناسب، می توان گفت فن آوری ماشین بینایی و پردازش تصویر قادر است با دقت خوبی ویژگی های بیوشیمیایی پرتقال خونی را تخمین بزند.