1404/02/01
جعفر امیری پریان

جعفر امیری پریان

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 36983832100
دانشکده: دانشکده کشاورزی
نشانی: همدان، انتهای بلوار آزادگان، دانشکده کشاورزی، گروه مهندسی بیوسیستم
تلفن: 34425400

مشخصات پژوهش

عنوان
اثر شدت نور در کاهش بار محاسباتی یادگیری عمیق به منظور قطعه بندی تصویر حاوی گوجه فرنگی روی بوته
نوع پژوهش
پایان نامه
کلیدواژه‌ها
گوجه فرنگی، شبکه عصبی YOLO، شدت نور، کاهش بار محاسباتی
سال 1401
پژوهشگران سهیل خانمحمدی(دانشجو)، جعفر امیری پریان(استاد راهنما)، حسین باقرپور(استاد مشاور)

چکیده

چین با تولید سالانه بیش از 65.15 میلیون تن، بزرگترین تولید گوجه فرنگی در جهان است که یک سوم تولید جهانی گوجه فرنگی را به خود اختصاص می دهد.یکی ازمشکلات اصلی درتولیدگوجه فرنگی نیاز به نیروی کارانسانی جهت برداشت این محصول می باشد امروزه روش های رباتیک درحال جایگزین شدن با نیروی انسانی جهت برداشت محصول می باشندویکی از اصلی ترین قسمت های برداشت رباتیک بخش تشخیص وارزیابی گوجه فرنگی و انتخاب هدف مطلوب می باشدبرای تشخیص محصول الگوریتم ها و روش های بسیار متنوعی وجود دارد ما در این پژوهش از شبکه عصبی YOLOv5استفاده کرده ایم که نسبت به نسخه های دیگر YOLOسرعت بالاتری دارد وفرایند محاسبات این نسخه کوتاه تر و کم حجم تر می باشددراین پژوهش هدف اصلی ما مشخص کردن بهترین شدت نورجهت آموزش شبکه و شناسایی گوجه فرنگی ها درهر تصویر همراه با کمترین زمان (بار محاسباتی) می باشد دراین پژوهش ما از سه رزولویشن 320و640و960استفاده کرده ایم که با افزایش رزولویشن نتایج آموزش ،mApافزایش و تعداد نمونه های تشخیص داده شده در هر تصویر افزایش می یابدبرای مثال در شدت نور 2423لوکس ودررزولویشن 320 mAp50میزان 76درصد میباشد ولی در رزولویشن 960mAp50 میزان 83درصد میباشدکمترین زمان برای تشخیص وشناسایی گوجه فرنگی های یک تصویردر رزولویشن 320ساعات 10و12 با 9/8 msمی باشندوکمترین بار محاسباتی را دارا می باشدوبالا ترین میزان mApمتعلق به رزولوشن 960ساعت 8میباشدکمترین میزان mApنیز متعلق به رزولویشن 960ساعت 8صبح می باشدمی توان گفت بهترین عملکرد را در سه رزولویشن ساعت 10 با 2423لوکس دارا می باشد