بیماری آلزایمر یکی از بیماری های زوال مغزی است که در آن حجم مغز کاهش یافته و نورون های مغزی و اتصالات بین آن ها از بین می رود. این بیماری منجر به اختلال در رفتار، حافظه و تعقل بیماران می شود. تاکنون، هیچ درمان قطعی برای بیماری آلزایمر وجود ندارد اما اگر این بیماری در مراحل اولیه شناسایی شود و درمان بیمار از مراحل اولیه بیماری آغاز گردد، کارایی روش های درمانی بیشتر شده و تاثیر بیشتری بر روند درمانی بیمار خواهد گذاشت. روش های تصویربرداری مغزی، یکی از ابزارهای موثر در تشخیص آلزایمر است. تاکنون روش های تشخیص به کمک کامپیوتر زیادی در زمینه تشخیص آلزایمر پیشنهاد شده است که می توانند با دریافت تصاویر پزشکی از مغز بیمار و انجام پردازش های تصویر، به تشخیص آلزایمر بپردازند. دراین مطالعه، رویکردی مبتنی بر یادگیری عمیق برای تشخیص خودکار آلزایمر از روی تصاویر MRI مغزی ارائه شده است. رویکرد پیشنهادی شامل مراحل پیش پردازش برای تبدیل فرمت و رفع نویز، مرحله نقشه برجستگی برای استخراج ویژگی، مرحله نقشه رنگی برای تبدیل تصاویر از حالت دوبعدی به سه بعدی و در نهایت شبکه عصبی کانولوشنی است. در این مطالعه از سه نوع نقشه برجستگی مختلف و چهار نوع معماری متفاوت برای بخش شبکه عصبی کانولوشنی بهره گرفته شده که منجر به توسعه دوازده مدل مختلف برای تشخیص آلزایمر شده است. ارزیابی روش های پیشنهادی بر روی صد تصویر MRI از مجموعه داده Oasis با در نظر گرفتن 20٪ از داده های برای آزمون، 10٪ برای اعتبارسنجی80 ٪ برای آموزش، منجر به نتایج متفاوتی بر روی دوازده مدل توسعه یافته شد. معیارهای دقت، صحت، حساسیت و AUC محاسبه شده برای تمام مدل ها اعدادی بین 63٪ تا 76٪ را کسب کردند و بهترین مدل، با استفاده از نقشه برجستگی CovSal و معماری کانولوشنی ZFNet موفق به کسب 73٪ دقت، 73٪ صحت، 73٪ حساسیت و AUC 76٪ شد. هم چنین مقایسه روش های پیشنهادی با مقاله پایه نشان داد که روش پیشنهادی بهتر از مقاله پایه عمل می کند و نتایج قابل اعتمادتری تولید می کند.