احساس چهره نقش مهمی در انتقال مفهوم در ارتباطات انسانی دارد به طوری که پژوهش ها نشان داده است که تا 55% مفاهیم از طریق احساس چهره منتقل می شود و فقط 7% آن با جملات و بیان فرد انتقال پیدا می کند. این موضوع بسیاری از پژوهشگران را به حوزه تحلیل و تشخیص احساس چهره علاقه مند کرد زیرا این حوزه می تواند در بسیاری زمینه های بینایی ماشین ازجمله تعامل انسان و کامپیوتر و محاسبات احساسی به کاربرده شود. در سال های اخیر با توجه به پیشرفت های روزافزون شبکه های عصبی، پژوهش های بسیاری در حوزه تحلیل و تشخیص احساس چهره انجام گرفته است. در این پژوهش روشی مبتنی بر طبقه بندی جمعی با استفاده از شبکه های عصبی کانولوشنی جهت تحلیل و تشخیص احساس چهره ارائه شده است. در شبکه عصبی اول، از الحاق ویژگی های فضایی تصویر به ویژگی های کلی آن جهت ایجاد نقشه ویژگی ها به عنوان ورودی مرحله کلاس بندی استفاده شده است. در شبکه دوم با همان ساختار شبکه اول، از الگوی دودویی محلی تصاویر به عنوان ورودی شبکه استفاده شده است. از آنجا که الگوی دودویی محلی می تواند بافت تصاویر را به خوبی استخراج کند، درنتیجه در تشخیص برجستگی ها و بیان صورت در احساسات مختلف چهره می تواند مؤثر باشد. پس از آموزش دو شبکه پیشنهادی مذکور، جهت طبقه بندی احساس، احتمال بیشینه بین دو شبکه به عنوان خروجی نهایی در نظر گرفته می شود. روش پیشنهادی بر روی مجموعه داده FER2013 اعمال و آزموده شده است. نتایج به دست آمده از آزمایش روش پیشنهادی بر روی مجموعه داده نشان می دهد که سازوکار عملکرد مطلوبی داشته و در مقایسه با روش های پیشین به نتایج قابل قبولی دست یافته است.