1404/02/01
حسن ختن لو

حسن ختن لو

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 14015911600
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن:

مشخصات پژوهش

عنوان
دسته بندی اراضی در تصاویر ماهواره ای با استفاده از روش های یادگیری عمیق
نوع پژوهش
پایان نامه
کلیدواژه‌ها
تصاویر ماهوارهای، یادگیری عمیق، نقشه برداری، سنجش از راه دور، دسته بندی تصاویر، شبکه عصبی کانولوشنی
سال 1400
پژوهشگران فاطمه امیدی خواه(دانشجو)، حسن ختن لو(استاد راهنما)

چکیده

تهیه تصویر از زمین و جمع آوری اطلاعات مبتنی بر مکان، از گذشته های دور تا به امروز یکی از دغدغه های بشر بوده است. امروزه با گسترش تجهیزات ماهواره ای و امکان تصویربرداری پیشرفته از سطح و جو زمین، پژوهش ها به سمت پردازش این داده های ارزشمند سوق داده می شوند. با توجه به کاربردهای نظامی، محیط زیستی، شهرسازی و کشاورزی، شناسایی و دسته بندی اراضی در تصاویر سنجش از دور از پژوهش های بنیادی به شمار می رود. از طرفی الگوریتم های یادگیری ماشین به خصوص روش های یادگیری عمیق در حل مسائل هوش مصنوعی، سهم بسزایی داشته و تا به حال نقش مهمی را ایفا کرده اند. در این پژوهش دو رویکرد مبنی بر یادگیری عمیق برای دسته بندی تصاویر ماهواره ای ارائه شد که بر پایه انتقال یادگیری شبکه های کانولوشنی VGG-19 و Efficient-Net هستند. در کنار این شبکه ها از ساختار شبکه رمزگذار-رمزگشای خودکار جهت استخراج نقشه ویژگی از تصاویر استفاده شد. شبکه های نهایی پیشنهادی حاصل هم نشینی یک شبکه از پیش یادگیری شده با شبکه رمزگذار خودکار هستند، که جهت دسته بندی تصاویر ماهواره ای طراحی شده اند.. این دو شبکه پس از پردازش تصاویر ماهواره ای به منظور بالابردن تعداد نمونه های آموزشی ، اصلاح کیفیت و حذف تاری از تصاویر برروی نمونه های تصاویر ماهواره ای اعمال شده و به دسته بندی به روش پیش بینی برچسب کلاس مربوط به تصویر می پردازند. از مزایای روش ارائه شده می توان به استخراج و یادگیری ویژگی به صورت خودکار در مقایسه با مهندسی ویژگی و استخراج ویژگی از نمونه ها به روش کلاسیک اشاره کرد. تفاوت شبکه ها در عملکرد دسته بندی تصاویر ماهواره ای و نحوه استخراج ویژگی از آن ها، باعث ایجاد دو رویکرد متفاوت از هم شده است. هردو رویکرد با استفاده از مجموعه داده های معروف تصاویر ماهواره ای با نام های NWPU-RESISC45 , AID-2017 ,UCMerced ارزیابی شده و نتایج حاصل ار ارزیابی مورد بررسی قرار گرفته است. دقت رویکرد اول برپایه شبکه VGG برروی مجموعه داده های نامبرده به ترتیب96.30 ، 97.52 و 97.82 درصد و دقت رویکرد دوم برپایه شبکه Efficient-Net به ترتیب 97.48 ، 98.94 و 99.01 است که عملکرد مطلوب مدل را نمایش می دهد. رویکرد دوم به نسبت رویکرد اول، سرعت بیشتر و دقت بهتری دارد.