چکیده: قطعه بندی تومور مغزی یک کار مهم در پردازش تصاویر پژشکی است. تومورها شکل، اندازه و کنتراست مختلفی دارند و می توانند در هر ناحیه از مغز ظاهر شوند، از طرف دیگر بخاطر پیش بینی سخت و هزینه های درمان و پیگیری زیاد، فشار اقتصادی و اجتماعی قابل توجهی به همراه دارند. بنابراین تشخیص و شناسایی تومورها به عنوان یک گام اولیه برای برنامه ریزی درمان و بهبود کیفیت و امید به زندگی در بیماران توموری، از اهمیت حیاتی برخوردار است. امروزه مدل های مختلفی با استفاده از الگوریتم های کامپیوتری و هوش مصنوعی برای مساله قطعه بندی تومور مغزی در تصاویر MRI ارائه شده است که از بین آنها تکنیک های یادگیری عمیق نتایج بهتری در مقایسه با تکنیک-های غیریادگیری عمیق ارائه داده اند. در این پژوهش یک الگوریتم کاملا خودکار بر مبنای شبکه های عصبی کانولوشنال با رویکرد یادگیری عمیق برای مساله قطعه بندی تومور مغزی ارائه شده است که یک روش مبتنی بر تکه و شامل مراحل پیش پردازش و پس پردازش است. معماری شبکه عصبی مدل پیشنهادی ترکیبی از چند زیرشبکه عصبی کانولوشنی است که از ویژگی های محلی و سراسری بافت مغز بطور همزمان استفاده می کند. تصاویر ورودی پس از پیش پردازش به تکه هایی با اندازه یکسان تقسیم می شوند و به عنوان ورودی به شبکه ارسال می شوند. شبکه در نهایت به پیکسل مرکزی هر تکه یک برچسب نسبت می دهد. در مدل پیشنهادی بجای لایه کاملا متصل از یک پیاده سازی کانولوشنی لایه اتصال کامل استفاده شده است که باعث کاهش تعداد پارامترهای شبکه و در نتیجه افزایش سرعت مدل تا چندین برابر می شود. مدل پیشنهادی با استفاده از تصاویر دو مدالیته T1 و FLAIR از دو مجموعه داده BRATS2017 و BRATS2013 مورد ارزیابی و آزمایش قرار گرفت و دقت نتایج با استفاده از معیارهای ضریب تاس، حساسیت و تشخیص پذیری برای سه کلاس تومور شامل کل تومور، هسته تومور و تومور پیشرفته سنجیده شد.. نتایج کمی و کیفی حاصل از پیاده سازی مدل ارائه شده برای دو مجموعه داده عملکرد قابل قبول روش پیشنهادی را در مقایسه با حالات state of the art مساله قطعه بندی نشان می دهد.