سرطان پستان شایع ترین سرطان در زنان تشخیص داده شده است که اگر در مراحل ابتدایی بیماری تشخیص داده شود، احتمال بهبود کامل از بیماری بسیار بالاست و باعث کاهش تلفات جانی این بیماری می شود. ماموگرافی یک نوع عکس رادیوگرافی از بافت سینه است. پزشک متخصص برای تشخیص توده های غیر قابل لمس و بسیار کوچک پستان، تصاویر ماموگرافی را بررسی می کنند. مشاهده بصری این تصاویر و بررسی آن ، تنها ابزار پزشک برای تشخیص توده است، که در پی آن تأثیر خطای انسانی روی تشخیص توده ها را خواهد داشت. از این رو راه اندازی یک سیستم CAD برای قطعه بندی توده، به عنوان دومین عقیده در شناسایی توده ها و کمک به متخصصین پزشکی، گامی مهم و ضروری در این زمینه به شمار می رود. در این پژوهش، سیستمی خودکار برای قطعه بندی و تشخیص محل دقیق و اندازه و مرز توده های سینه با استفاده از پردازش تصویر، یادگیری ماشین و روش های فازی، طراحی و پیاده سازی شده است. در سیستم پیشنهادی، ابتدا عملیات پیش پردازش به منظور افزایش کنتراست تصویر و سپس حذف نویزهای موجود در تصاویر انجام شده است. پس از آن در فاز اول قطعه بندی، به منظور رسیدن به دقت بالا در قطعه بندی، از الگوریتم قطعه بندی Grow Cut استفاده شد. برای خودکار کردن انتخاب نقاط Seed الگوریتم Grow Cut، از مراکز خوشه های خوشه بند FCM به عنوان نقاط Seed اولیه، بهره گرفته شد. در فاز دوم پژوهش، استخراج ویژگی با استفاده از روش های فلیتر گابور، هیستوگرام گرادیان های جهت دار، الگوی دودویی محلی و ماتریس هم رخداد سطح خاکستری انجام گرفت. دلیل استفاده از این ویژگی ها، ایجاد مجموعه ای از انواع ویژگی های بافت، ویژگی های هندسی و ویژگی Intensity است که نتیجه ی آن بررسی همه جانبه تفاوت های توده و بافت سالم سینه خواهد بود. در ادامه دسته بندی پیکسلی برای قطعه بندی تصویر، با دو دسته بند ماشین بردار پشتیان با کرنل polynomial و K نزدیکترین همسایه، صورت گرفت. در گام نهایی، ترکیب الگوریتم Grow Cut با دو دسته بند SVM و KNN ، طراحی سیستم پیشنهادی را تکمیل می کند. نتایج بدست آمده از سه روش، به روش رآی اکثریت برای دسته بندی داده ها و در نهایت قطعه بندی نهایی توده، با هم ترکیب شدند. در پایان با استفاده از فیلتر اکثریت گام پس پردازش انجام شد. ارزیابی این پژوهش روی پایگاه داده mini-MIAS انجام شد که نتایج آزمایشات و