قابلیت و برخورداری از قدرت پیش بینی در مباحث علوم ورزشی، این امکان را فراهم می کند که علاوه بر تأثیر در کیفیت زندگی، ریسک ابتلا به صدمات عضلانی و اسکلتی را کاهش یابد. برای مثال، دانش بیومکانیک از طریق پیش بینی پاسخ های احتمالی به مداخلات و متغیرهای مکانیکی در پی ارتقاء سطح زندگی بطور کلی و پیشگیری از آسیب های ورزشی و حرکات انسان است. با وجود این، تغییرپذیری بسیار زیاد در داده های بیومکانیکی و تفاوت های فردی همواره به عنوان چالشی جدی، پیشروی محققین و دانشمندان این حوزه بوده است. بنابراین، دقت در اندازه گیری های بیومکانیکی داده ها از یک سو و به-کارگیری روش های نوین تحلیل داده ها از سوی دیگر، قادر است تا حدی تغییر پذیری و تفاوت های فردی را از طریق معرفی وشناسایی گروه های عملکردی کاهش دهد. یافتن گروه های عملکردی در عمل می تواند پاسخ های متفاوت بیومکانیکی تعداد کثیری از افراد را در قالب چند دسته معدود خلاصه نماید. این مزیت سبب نزدیکی به هدف غایی بیومکانیک یعنی پیش بینی اثر و تجویز مداخلات برای عملکرد مناسب حرکات انسان و به تبع آن کاهش اختلالات و آسیب ها می شود. پژوهش حاضر بر آن است تا با بکارگیری داده های کینتیک (ایمپالس، بیشترین فشارونیرو ) و با روش کلاس بندی SVM ) ماشین بردار پشتیبان) برای انواع پا گروه های عملکردی تعریف نماید. در پژوهش حاضر 90 آزمودنی زن شرکت کردند. برای ثبت آزمون از دستگاه RsScan که در طول مسیر 16 متری محل انجام آزمون نصب شده بود استفاده شد. برای انجام کلاس بندی داده ها و پیش بینی گروه های عملکردی ازروش دسته بندی بانظارت ماشین بردار پشتیبان استفاده شد. کلاس بندی SVM در حالت خطی با متغیر فشار و ایمپالس59٪ و با متغیر نیرو 57٪ دقت پیش بینی بدست آمد، همچنین در svm غیرخطی چند جمله ای درجه یک با متغیر فشار64٪ ،نیرو و ایمپالس 62٪ دقت گزارش شد و در svm چندجمله ای درجه دوبا متغیر فشار 58٪ ، با متغیر ایمپالس 53٪ و در نهایت با متغیر نیرو 73٪ دقت پیش بینی محاسبه شد.و با هر سه متغیر در SVM چندجمله ای درجه دو به 78٪ دقت در پیش بینی رسیدیم، که بهترین درصد پیش بینی بود. نتایج مطالعه حاضر نشان می دهد که دسته بندی براساس داده-های استاتیک نمی تواند پیش بینی دقیقی از رفتاردینامیک افراد داشته باشد. برای بررسی دینامیک پا به نظرمی رسد که طبقه بندی براساس پارامترهای دینامیک