1404/02/01
حسن ختن لو

حسن ختن لو

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 14015911600
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن:

مشخصات پژوهش

عنوان
دسته بندی چند برچسبه تصاویر ماهواره ای با استفاده از روش های یادگیری عمیق
نوع پژوهش
پایان نامه
کلیدواژه‌ها
دسته بندی چندبرچسبه تصاویر، یادگیری عمیق، شبکه های عصبی کانولوشنال، دسته بندی تصاویر ماهواره ای، تکنیک انتقال یادگیری، پردازش تصویر، شبکه در شبکه
سال 1397
پژوهشگران رضا محمدی مقدم(دانشجو)، حسن ختن لو(استاد راهنما)، یوسف رضایی(استاد راهنما)

چکیده

چکیده: با گسترش روز افزون رسانه های تصویربرداری هوایی و در نتیجه داده های ماهواره ای، نیاز به الگوریتم هایی کارا برای بررسی این تصاویر بیشتر احساس می شود. تصاویر ماهواره ای در زمینه های مختلفی مورد استفاده قرار می گیرند. یک نمونه از این حوزه ها، نظارت و حراست از محیط زیست است. دسته بندی تک برچسبه به فرآیند اختصاص یک برچسب از میان دسته های موجود به یک نمونه گفته می شود. دسته بندی تک برچسبه از دیرباز مورد توجه محققان بوده است و نتایج مطلوبی در این حوزه حاصل شده است. دسته بندی چند برچسبه از سوی دیگر، به فرآیند اختصاص چند برچسب (Y) به یک نمونه موجود گفته می شود. فضای ممکن برای تمام حالات دسته ها در دسته بندی چندبرچسبه از ترکیب تمام دسته ها (2^Y) حاصل می شود. این فضا بسیار بزرگ است و پیچیدگی مسئله را بسیار زیاد می کند. از طرفی روش های مبتنی بر یادگیری عمیق در حوزه های مختلف، عملکرد مطلوبی را ازخود به نمایش گذاشته اند. در این پژوهش، روشی کارآمد مبتنی بر یادگیری عمیق برای طبقه بندی چند برچسبه تصاویر ماهواره ای ارائه شده است. روش پیشنهادی از چند بخش تشکیل شده است. بخش اول شامل پیش پردازش تصاویر است. در بخش دوم شبکه ای ترکیبی با استفاده از اجزاء شبکه های عصبی پیچشی ارائه شده است. شبکه پیشنهادی، از دوشبکه معروف در حوزه دسته بندی تک برچسبه تصاویر به نام های VGG19 و Densenet استفاده می کند. به جهت پردازش ویژگی های خام استخراج شده، شبکه ای با استفاده از ساختار شبکه در شبکه طراحی شده است. در انتها از یک روش پس پردازش برای تعیین آستانه برچسب زنی استفاده شده است. همچنین روش پیشنهادی، بر روی دو مجموعه داده با دو حوزه مجزا آزموده شد. مجموعه داده اول، مجموعه داده آمازون تحت عنوان: Planet: Understanding the Amazon from Space با محتوای تصاویر ماهواره ای است. مجموعه داده دوم، مجموعه داده PASCAL Visual Object Classes (VOC) با محتوای اشیاء واقعی است. ارزیابی های کمی و کیفی صورت گرفته بر روی این مجموعه داده ها، عملکرد مطلوب روش پیشنهادی را برای دسته بندی چندبرچسبه تصاویر را نشان می دهد.