1404/02/01
حسن ختن لو

حسن ختن لو

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 14015911600
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن:

مشخصات پژوهش

عنوان
تشخیص حالات و ریز حالات چهره با استفاده از تصاویر و ویدیوهای RGB-D
نوع پژوهش
پایان نامه
کلیدواژه‌ها
تشخیص حالات و ریز حالات چهره، حس گر عمق سنج کینکت، هیستوگرام جهت گرادیان، فیلتر گابور، ویژگی های توانمند سرعت یافته، رقمی ساز فاز محلی، الگو های دو دویی محلی، ویژگی هار، پایگاه داده کینکت چهره ایرانیان، ماشین بردار پشتیبان، شبکه عصبی چندلایه
سال 1396
پژوهشگران سیدمحمدحسین موسوی(دانشجو)، حسن ختن لو(استاد راهنما)

چکیده

چهره انسان بیان کننده احساسات درونی، تفکرات و تا حدودی کسالت های جسمی او است. این احساسات از طریق عضلات صورت به صورت بصری نمود پیدا می کند. تحقیقات نشان داده است که حالات صورت بهترین وسیله برای انتقال احساسات می باشند. حالات و ریز حالات چهره ی افراد می تواند در تصاویر و فریم های ویدیویی دیجیتال موردبررسی قرار گیرند. مدت زمان تخمینی رخ دادن یک حالت در چهره بین 0.5 تا 4 ثانیه و یک ریز حالت بین 0.1 تا 0.5 ثانیه است. همچنین در بعضی مراجع این مقدار 3/1، 15/1 و 25/1 ثانیه هم بیان شده است. بدیهی است برای ثبت ریز حالت ها، دریافت فریم های ویدیویی بین 30 تا 200 فریم در ثانیه ضروری است. قبل از پیدایش حس گرهای عمق سنج، این عمل توسط تصاویر فقط بافت انجام می گرفت؛ اما بعد از پیدایش حس گرهای عمق سنج(Depth Sensor)، دقت تشخیص حالات چهره به دلیل داده های بیشتر که همان بعد عمق است، به شکل چشم گیری بالا رفت. این مسئله یک دهه است که به خوبی در این زمینه ملموس است. تشخیص حالت چهره در تعامل انسان و ربات، پویانمایی دوبعدی و سه بعدی، روانشناسی، ارتباطات غیرکلامی یا زبان بدن، تشخیص حس درونی، مسائل امنیتی مانند دروغ سنجی و ... کاربرد دارد. ویژگی های مورداستفاده در این پژوهش شامل هیستوگرام جهت گرادیان(HOG)، فیلتر گابور(Gabor Filter)، ویژگی های توانمند سرعت یافته(SURF)، رقمی ساز فاز محلی(LPQ) الگوهای دودویی محلی (LBP) و ویژگی هار(Haar) هستند. همچنین به علت کمبود پایگاه داده تشخیص حالات چهره به قالب بافتی عمقی) RGB-D (و همچنین نقصان های پایگاه داده های موجود، پایگاه داده ای شامل 40 نفر مدل و یا Subject در سنین و جنسیت مختلف توسط حس گر کینکت نسخه ی 2 ) Kinect V.2 (جمع آوری شده که مشکلات پایگاه داده های موجود با خصوصیات مشابه را تا حد قابل قبولی برطرف کرده است. از طرفی می توان گفت این پایگاه داده اولین پایگاه داده عمق برای تشخیص ریز حالات چهره است. لازم به ذکر است که این پایگاه داده، بانام پایگاه داده کینکت چهره ایرانیان و به لاتین Iranian Kinect Face Databse (IKFDB) نام گذاری گردیده است. با توجه به اینکه داده دریافتی از کینکت به دو بخش بافت (RGB) و عمق(Depth) تقسیم می شود، یک روش استخراج ویژگی ترکیبی هم برای داده های عمق بر اساس تغییرات فاصله پیکسلی با حس گر عمق در نظر گرفته شده است. بخشی هم تحت