1404/02/01
حسن ختن لو

حسن ختن لو

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 14015911600
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن:

مشخصات پژوهش

عنوان
ارائه ی روشی برای بازیابی مبتنی بر محتوای تصاویر دستگاه گوارش با ترکیب ویژگی های سطح پایین تصاویر
نوع پژوهش
پایان نامه
کلیدواژه‌ها
بازیابی مبتنی بر محتوای تصویر، تصاویر دستگاه گوارش، استخراج ویژگی، هیستوگرام رنگ، ممان های رنگ، تصاویر لبه، تبدیل موجک، تبدیل رادون، بازیابی ترکیبی، بلوک بندی وزن دار
سال 1393
پژوهشگران حسن ختن لو(استاد راهنما)

چکیده

بازیابی مبتنی بر محتوای تصاویر ابزاری است برای جستجوی تصاویر از یک مجموعه بزرگ بر اساس ویژگی های بصری ای که به طور خودکار از تصاویر استخراج می شوند. با پیشرفت فناوری، تصویربرداری به یکی از اجزاء اصلی حوزه پزشکی تبدیل شده است و پایگاه داده های حجیم، تصاویر پزشکی متنوعی را جمع آوری می کنند. انجام تشخیص با مقایسه تصاویر پزشکی کنونی و گذشته یکی از روش های اصلی در تشخیص پزشکی است. بنابراین بازیابی مبتنی بر محتوای تصاویر می تواند برای تشخیص درست به پزشکان کمک کند و شواهد کمکی مرتبطی را از موارد شناخته شده قبلی فراهم آورد. همچنین می تواند نقش یک مشاور متخصص را برای پزشکان ایفا کند و یا به عنوان یک وسیله آموزشی برای دانشجویان، دستیاران و محققان پزشکی به کار رود. یکی از چالش های مهم در پزشکی، تشخیص دقیق آسیب های دستگاه گوارش از روی تصاویر و انتخاب روش درمانی مناسب است که در این راستا بازیابی مبتنی بر محتوا نقش مهمی می تواند ایفا کند. یک سیستم بازیابی مبتنی بر محتوا معمولاً شامل دو بخش استخراج ویژگی و بازیابی تصویر است. در روش پیشنهادی تمرکز بر روی بخش استخراج ویژگی است. اولین مرحله روش پیشنهادی انجام پیش پردازش روی تصاویر پایگاه داده است. پس از آن پنج ویژگی مختلف از تصاویر استخراج می شوند. اولین ویژگی هیستوگرام رنگ است که با کوانتیزاسیون کانال های تصویر در فضای HSV با استفاده از الگوریتم FCM محاسبه می شود. ویژگی بعدی ممان های رنگ است که چهار ممان مرکزی کانال های تصویر در فضای RGB را محاسبه کرده و به عنوان ویژگی به کار می برد. برای حفظ اطلاعات مکانی، از یک بلوک بندی وزن د ار برای استخراج ویژگی با این دو روش استفاده می شود. ویژگی های دیگری با استفاده از تصاویر لبه به دست می آیند. در این روش پس از استخراج لبه، تصویر به بلوک های مربعی و مستطیلی تقسیم می شود و سه ویژگی تعداد بلوک های بدون لبه، تعداد پیکسل های سازنده لبه در هر بلوک و متوسط تعداد پیکسل های هر تکه لبه در داخل هر بلوک، از تصاویر استخراج می شوند. تجزیه تصاویر و بازسازی آن ها با استفاده از تبدیل موجک مبنای روش دیگری برای استخراج ویژگی است. تصویر تا 10 سطح تجزیه شده و 5 بار به شکلی متفاوت بازسازی می شود و 5 ویژگی آماری از نتیجه هر بازسازی استخراج می گردد. بار دیگر تصویر تا 5 سطح تجزیه شده و ضرایب موجک سطوح 2 تا 5 به عنو