2025 : 4 : 22
Hossein Bayat

Hossein Bayat

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 25221255600
HIndex:
Faculty: Faculty of Agriculture
Address: Associate Professor (Ph. D.), Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran.
Phone: 09188188378

Research

Title
Prediction capability of different soil water retention curve models using artificial neural networks
Type
JournalPaper
Keywords
soil water retention curve (SWRC); pedotransfer functions (PTFs); artificial neural networks (ANNs)
Year
2014
Journal Archives of Agronomy and Soil Science
DOI
Researchers ، Hossein Bayat ، First-Name Last-Name ، Hamid zareabyaneh

Abstract

Direct measurements of soil water retention curve (SWRC) are costly and time consuming. So far, less investigation has been carried out on the prediction capability of different models using artificial neural networks (ANNs). In this study in total 75 soil samples were collected from Guilan province, north of Iran. The basic soil properties namely sand, clay and bulk density were used as predictors and the parameters of ten SWRC models were forecasted by ANNs. The prediction capability of each model was examined based on three criteria in nine groups of samples: total, fine (clay and silty clay) and medium (clay loam, silt loam, silty clay loam and loam) textural groups and six soil texture classes. Overall, the Boltzman, Tani, Gardner, Campbell and van Genuchten models produced the best results. However, bimodal models (Durner, Seki and Dexter) established on non-uniform pore size distribution with two modes (peaks) in soils showed low prediction capability in this study. Therefore, further research is needed. Sensitivity analysis indicated that the residual and saturated water contents were largely dependent on clay content.