ظرفیت تبادل کاتیونی خاک یکی از مهمترین عوامل موثر در حاصلخیزی خاک است که اندازهگیری آن دشوار، زمانبر و هزینهبر است. استفاده از مدلها و معادلات مختلف یکی از سادهترین، ارزانترین و سریعترین روشهای ارزیابی ظرفیت تبادل کاتیونی خاک است. لذا هدف از مطالعه حاضر ارزیابی تاثیر گروهبندی بر پایه ویژگیهای مختلف بر عملکرد توابع در تخمین ظرفیت تبادل کاتیونی خاک و معرفی نوعی از گروهبندی که بهترین نتایج تخمین را دربرداشته باشد و همچنین مقایسه قابلیت تخمین ظرفیت تبادل کاتیونی با استفاده از روش شبکههای عصبی مصنوعی است. این مطالعه در سال 1400 در دانشگاه بوعلی سینا همدان انجام شد. در این پژوهش از 45948 نمونه خاک مربوط به پایگاه اطلاعاتی یکنواخت شده خاکهای جهان استفاده گردید. ابتدا نمونه خاکهای پایگاه اطلاعاتی در حالتهای مختلف گروهبندی شدند. سپس برای کل داده و کلاسهای مختلف هر گروه با استفاده از 9 متغیر تخمینگر شامل اجزای بافت خاک، کربن آلی، سولفات کلسیم، کربنات کلسیم، جرم مخصوص ظاهری، درصد اشباع بازی، مجموع کاتیونهای بازی قابل تبادل واکنش خاک در 11 مدل ارزیابی شد. نتایج نشان داد در کلاسهای بافتی ضریب بهبود نسبی در بخش آزمون شبکه عصبی مصنوعی برابر 87 درصد بود. همچنین نتایج نشان داد که RMSE در بخش آزمون در کلاس درشت بافت برابر 257/0 و برای کلاس ریز بافت برابر با 364/0 بود. به طورکلی نتایج نشان داد که استفاده از توابع به دست آمده که گروهبندی در آنها موجب بهبود تخمین ظرفیت تبادل کاتیونی شده روشی آسان و کم هزینه در تخمین ظرفیت تبادل کاتیونی به شمار میرود.