1404/02/02
حاتم عبدلی

حاتم عبدلی

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 35178909100
دانشکده: دانشکده فنی و مهندسی
نشانی:
تلفن:

مشخصات پژوهش

عنوان
بهبود کارایی شبکه های عصبی عمیق با استفاده از حساب تقریبی و سنتز سطح بالا
نوع پژوهش
پایان نامه
کلیدواژه‌ها
شبکه های عصبی عمیق، یادگیری عمیق، حساب تقریبی، ضرب تقریبی، FPGA، ابزارهای سنتز سطح بالا
سال 1401
پژوهشگران سمیه کیانی(دانشجو)، حاتم عبدلی(استاد راهنما)، محرم منصوری زاده(استاد مشاور)

چکیده

چکیده: امروزه الگوریتمهای یادگیری ماشین و یادگیری عمیق در زمینه های مختلف بسیار پرکاربرد هستند. روش های متعددی برای حل مشکلات سرعت و زمان اجرای این الگوریتم ها پیشنهاد شده ولی تا کنون به نتیجه ای که بتوان این الگوریتم ها را در زمان مناسب اجرا کرد، نرسیده اند. از آنجایی که این الگوریتم ها در بسیاری از حوزه های هوش مصنوعی مانند بینایی ماشین، تشخیص گفتار، تشخیص جسم و ... کاربرد دارند، در این پژوهش قصد داریم با استفاده از حساب تقریبی، کارایی و همچنین بهره وری انرژی مصرفی آنها را بهبود دهیم. در این پایان نامه، نسخه ای جدید از روشهای حساب تقریبی برای کاهش زمان اجرا در الگوریتم های شبکه های عصبی ارائه شده است، از آنجایی که در این الگوریتم ها مسئله اصلی زیاد بودن زمان اجرای الگوریتم ها است، زمان اجرا را با استفاده از حساب تقریبی و رویکرد سنتز سطح بالا کم کرده ایم، بطوریکه دقت را تا حد ممکن قربانی زمان اجرای محاسبات می کنیم. از طرفی هم مطلع هستیم که شبکه های عصبی تحمل پذیری خطا دارند، پس لزومی ندارد که پیاده سازی الگوریتم های محاسباتی خیلی دقیق باشند؛ در نتیجه می خواهیم دقت محاسبات را به اندازه ای که مورد نیاز است و دقت محاسبات الگوریتم را مختل نمی کند، طراحی کنیم. نتیجه این کار باعث کوچکتر شدن مدار، بالا بردن سرعت پردازش یا فرکانس کاری و همچنین کاهش توان مصرفی مدار است. هدف از انجام این پایان نامه، بررسی عوامل موثر در بهبود سرعت و زمان اجرای الگوریتم های شبکه های عصبی کانولوشن در پردازش تصویر است. شبکه عصبی کانولوشن به عنوان یکی از بهترین و پرکاربردترین شبکهها در زمینه پردازش و کلاسبندی تصاویر است. نتایج این پژوهش نه فقط در بهبود کارایی کانولوشن، بلکه در بسیاری از کاربردها و الگوریتم های یادگیری ماشین قابل تعمیم است. ارزیابی نتایج این پژوهش، با استفاده از گوگل کولب، ابزار سنتز سطح بالای Vivado، و ALWANN framework محاسبه شده است. همچنین در این کار از الگوریتم های پردازش تکاملی و ژنتیک هم در پیاده سازی مدارها بهره برداری شده است و شبکه عصبی مورد استفاده در این پژوهش ResNet است. نتایج این پژوهش نشان می دهد که با داشتن دقت کلاس بندی 82 درصدی تصاویر، زمان انجام محاسبات، حداکثر تاخیر مدار ضرب کننده و توان مصرفی در مقایسه با کارهای مشابه، به ترتیب 2.5%، 33.5% و 41.93% کاهش داشته ا