دمای پایین منجر به آسیبهای فیزیولوژیکی به سلول گیاهان حساس به سرمازدگی و از بین رفتن محصولات گرمسیری و نیمه گرمسیری میشود. در این مطالعه مدلسازی شبکه عصبی مصنوعی بهمنظور پیشبینی اثر تنش سرما بر نشاء گوجهفرنگی بعد از اعمال 10 و 20 درصد پلیاتیلن گلیکول استفاده گردید. امکان افزایش تحمل تنش سرمایی در نشاهای گوجهفرنگی با ، پیشتیمار خشکی با 0 کاربرد پلیاتیلن گلیکول بررسی و پس از اعمال تنش سرما به مدت 6 ساعت در روز به مدت 6 روز متوالی و در دمای 3 درجه سلسیوس، دادهها جمعآوری گردید. بهمنظور پیشبینی اثر تنش سرما بر خصوصیات نشاء گوجهفرنگی از شبکه عصبی پرسپترون چندلایه فنل کل، محتوای آب نسبی، ،b کلروفیل ،a پیشخور با 2 ورودی (اثر تنش خشکی و اثر تنش سرمایی) و 8 خروجی (کلروفیل فلورسانس کمینه، فلورسانس بیشینه، نشت یونی ریشه و پرولین) استفاده شد. نتایج نشان داد شبکهای با تعداد 7 نرون در یک لایه پنهان و با استفاده از تابع فعالسازی تانژانت هیپربولیک و روش بهینهسازی لیونبرگ مارکوت و درصد دادههای مورداستفاده برای 40 میتوان اثر تنش خشکی بر میزان مقاومت به سرمای نشاهای گوجهفرنگی را با میانگین ضریب /20/ تربیت/ آزمون/ ارزیابی برابر 40 0 تخمین زد. بر اساسنتایج آنالیز حساسیت توسط شبکه عصبی بهینه، شدت تنش خشکی اعمالشده با پلیاتیلن / همبستگی برابر 92 گلیکول مؤثرترین عامل در تخمین تحمل به سرما و خصوصیات فیزیولوژیکی گوجهفرنگی میباشد.