2025 : 4 : 22
Ebrahim Amini-Seresht

Ebrahim Amini-Seresht

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 56563082200
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Order statistics with multivariate concomitants: stochastic comparisons
Type
JournalPaper
Keywords
‎Multivariate ordinary stochastic order‎, ‎multivariate hazard rate order‎, ‎multivariate likelihood ratio order‎, ‎multivariate total positivity‎, ‎reliability theory‎, ‎clean-up expenses‎, ‎computable bounds.
Year
2015
Journal STATISTICS
DOI
Researchers Ebrahim Amini-Seresht

Abstract

Let \((X_i,\boldsymbol{Y}_i)=(X_i,Y_i^{(1)},Y_i^{(2)},\dots,Y_i^{(k)})\)‎, ‎\(i=1,2,\dots\)‎, ‎be a sequence of independent and identically distributed \((k+1)\)-dimensional random vectors‎. ‎Furthermore‎, ‎let \(X_{1:n}\le X_{2:n}\dots\le X_{n:n}\) be the order statistics based on the first coordinates of the first \(n\) elements in the sequence‎, ‎and let \(\boldsymbol{Y}_{[1:n]},\boldsymbol{Y}_{[2:n]},\dots,\boldsymbol{Y}_{[n:n]}\) be the corresponding \(k\)-dimensional concomitants‎. ‎Several results that compare \((X_{j:m},\boldsymbol{Y}_{[j:m]})\) and \((X_{i:n},\boldsymbol{Y}_{[i:n]})\)‎, ‎with respect to various multivariate stochastic orders‎, ‎are obtained‎. ‎Next‎, ‎let \((S_i,\boldsymbol{T}_i)=(S_i,T_i^{(1)},T_i^{(2)},\dots,T_i^{(k)})\)‎, ‎\(i=1,2,\dots\)‎, ‎be another sequence of independent and identically distributed \((k+1)\)-dimensional random vectors‎. ‎Furthermore‎, ‎let \(S_{1:m}\le S_{2:m}\dots\le S_{m:m}\) be the order statistics based on the first coordinates of the first \(m\) elements in the sequence‎, ‎and let \(\boldsymbol{T}_{[1:m]},\boldsymbol{T}_{[2:m]},\dots,\boldsymbol{T}_{[m:m]}\) be the corresponding \(k\)-dimensional concomitants‎. ‎Several results that compare \((X_{j:m},\boldsymbol{Y}_{[j:m]})\) and \((S_{i:n},\boldsymbol{T}_{[i:n]})\)‎, ‎with respect to various multivariate stochastic orders‎, ‎are established‎. ‎It is shown that some of the results in this paper strengthen previous results in the literature‎. ‎An application in reliability theory is described‎. ‎A derivation of computable bounds‎, ‎on various probabilistic quantities of interest involving multivariate concomitants‎, ‎illustrates the theory.