2025 : 4 : 21
Ebrahim Amini-Seresht

Ebrahim Amini-Seresht

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 56563082200
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Stochastic Monotonocity of Conditional Order Statistics in Multiple-Outlier Scale Population
Type
JournalPaper
Keywords
Likelihood ratio order; Conditional order statistics; RR2 dependent; Permanent
Year
2016
Journal PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES
DOI
Researchers Ebrahim Amini-Seresht ، Yiying Zhang

Abstract

This paper discusses the stochastic monotonicity property of the conditional order statistics from independent multiple-outlier scale variables in ‎terms‎ of the likelihood ratio order‎. ‎Let $X_1,\ldots,X_n$ be a set of non-negative independent random variables with $X_i$‎, ‎$i=1,\ldots,p$‎, ‎having common distribution function $F(\lambda_1 x)$‎, ‎and $X_j$‎, ‎$j=p+1,\ldots,n$‎, ‎having common distribution function $F(\lambda_2 x)$‎, ‎where $F(\cdot)$ denotes the baseline distribution‎. ‎Let $X_{i:n}(p,q)$ be the $i$-th smallest order statistics from this sample‎. ‎Denote by $X_{i,n}^{s}(p,q)\doteq [X_{i:n}(p,q)|X_{i-1:n}(p,q)=s]$‎. ‎Under the assumptions that $xf'(x)/f(x)$ is decreasing in $x\in\mathcal{R}_{+}$‎, ‎$\lambda_{1}\leq\lambda_{2}$ and $s_{1}\leq s_{2}$‎, ‎it is shown that $X_{i:n}^{s_1}(p+k,q-k)$ is larger than $X_{i:n}^{s_2}(p,q)$ according to the likelihood ratio order for any $2\leq i\leq n$ and $k=1,2,\ldots,q$‎. ‎Some parametric families of distributions are also provided to illustrate the theoretical results‎.