2025 : 4 : 21
Ebrahim Amini-Seresht

Ebrahim Amini-Seresht

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 56563082200
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
On Entropy Order for Order Statistics and their Concomitants
Type
Presentation
Keywords
‎Dispersive order‎, ‎decreasing failure rate‎, ‎strong stochastic order‎, ‎symmetric distribution and usual stochastic order‎.
Year
2015
Researchers Ebrahim Amini-Seresht

Abstract

‎Let $(X,Y)$ and $(S,T)$ be two continuous random vectors‎. ‎It is shown that if $S$‎, ‎$[Y|X=x]$ and $[T|S=x]$‎, ‎for all $x$ are $DFR$‎, ‎$Y$ is stochastically increasing in $X$ and $(X,Y) \le_{sst} (S,T)$‎, ‎then $H (X,Y) \le H(S,T)$‎, ‎where $H(Z)$ is Shannon entropy of a random variable $Z$‎. ‎Let $(X_i,Y_i)$‎, ‎$i=1,\ldots,max\{m,n\}$ be a set of independent copies of $(X,Y)$‎. ‎It is also shown that if‎ ‎$X$ and $[Y|X=x]$‎, ‎for all $x$ have $DFR$ distributions and‎ ‎$Y$ is stochastically increasing in $X$‎, ‎then for $i \le j$ and $n-i \ge m-j$‎, ‎$H(X_{i:n},Y_{[i:n]}) \le H(X_{j:m},Y_{[j:m]})$‎. ‎Let $(S_i,T_i)$‎, ‎$i=1,\ldots,max\{m,n\}$ be a set of independent copies of $(S,T)$‎. ‎It is observed that under certain set of mild conditions on $F_{X,Y}$ and $F_{S,T}$‎, ‎for $i \le j$ and $n-i \ge m-j$‎, ‎$H(X_{i:n},Y_{[i:n]}) \le H(S_{j:m},T_{[j:m]})$‎. ‎Finally‎, ‎we discuss some conjectures about entropy properties of vector of order statistics corresponding to a random sample of size $n$ from a symmetric distribution which admits density‎.