2025 : 4 : 21
Davood Nematollahi

Davood Nematollahi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 7003854482
HIndex:
Faculty: Faculty of Chemistry and Petroleum Sciences
Address:
Phone:

Research

Title
Optimization and Modeling of Tetracycline Removal from Wastewater by Three-Dimensional Electrochemical System: Application of Response Surface Methodology and Least Squares Support Vector Machine
Type
JournalPaper
Keywords
Modeling Tetracycline Removal
Year
2020
Journal ENVIRONMENTAL MODELING & ASSESSMENT
DOI
Researchers Maryam Foroughi ، Alireza Rahmani ، Ghorban Asgari ، Davood Nematollahi ، Kaan Yetilmezso Kaan Yetilmezso ، Mohammad Reza Samarghandi

Abstract

A three-dimensional electrochemical system was employed as an advanced treatment technology for treatment of tetracycline-containing wastewater. An initial tetracycline concentration of 20.17–100.23 mg/L, pH range of 2.43–9.18, and current density of 1.03–15.72 mA/cm2 were implemented for the optimization and modeling of the process within the framework of a three-factor, five-level Box–Wilson central composite design-based response surface methodology and least squares support vector machine. The results of statistics corroborated that three main effective factors and reactor performance were very well described by the second-order polynomial equation (coefficient of determination = 0.94, mean square error = 0.0042, root mean square error = 0.065, average absolute deviation = 2.51, and mean absolute error = 0.037). Under the optimal conditions introduced by the desirability function approach, 90.42 (± 2.3)%, 49.91 ± (8.4)% and 28.80 ± (16.70)% of tetracycline, chemical oxygen demand, and total organic carbon could be removed using the three-dimensional electrochemical process from wastewater. The findings of this study demonstrated that the three-dimensional electrochemical system was as an effective, simple, and economic process compared to other electrochemical systems that have been recently used for antibiotics removal and could be considered as a promising technology for further investigations.